Solution found for cosmology's great pancake mystery?

May 15, 2005

Scientists from the University of Durham may have solved a decades-old puzzle regarding the distribution of the eleven small satellite galaxies that surround the Milky Way. The Milky Way is not alone. It is surrounded by a retinue of small "dwarf galaxy" companions. Cosmological theory predicts that these galaxies should occupy a large, nearly spherical halo but observations show that the satellite galaxies have a bizarre flattened, pancake-like distribution. The Durham team used sophisticated supercomputer models to simulate the formation of these galaxies and have succeeded in predicting the pancake configuration.

All galaxies have smaller satellite galaxies in orbit around them, which inhabit pockets of dark matter. Dark matter does not interact with light and the only way that we can infer its existence is by detecting the gravitational influence it exerts on normal matter, such as stars. According to cosmological theory, soon after the Big Bang, cold dark matter formed the universe’s first large-scale structures, which then collapsed under their own weight to form vast halos. The gravitational pull of these halos sucked in normal matter and provided a focus for the formation of galaxies. Galaxies are built up piece-by-piece as sub-galactic fragments merge together and, theoretically, this should lead to the formation of a tightly-bound galaxy at the core surrounded by a diffuse sphere of satellite structures. Cosmologists have been puzzled by the fact that not only do the Milky Way’s satellites lie on a flat circle, approximately perpendicular to the Galactic Plane, but also there are far too few satellite galaxies to fit in with predictions. This discrepancy had led some cosmologists to question the entire paradigm for the cold dark matter–driven process of galaxy formation.

The Durham team simulated the evolution of parts of the universe, randomly selected from a large cosmological volume, using a sophisticated supercomputer model. The model built up a complete history of all mergers between galactic building blocks, resulting in a family tree for each satellite galaxy formed. Using the powerful, “Cosmology Machine” supercomputer, they carried out six simulations in total and, in each case, found not only the correct number of satellites but also, surprisingly, that the eleven most massive satellite galaxies showed the same pancake-like distribution around the core galaxy that is observed in the satellites of the Milky Way. To find an explanation, the team made animations of the simulations and looked at the evolution of the dark matter halo in which the galaxy formed. The simulations show that the original dark matter halo began its collapse by forming a sheet-like structure that then wrapped up to form a web of filaments. The galaxies formed at dense knots of dark matter in this cosmic web and then moved along the spines of filaments towards the original halo’s major axis. The team found that this axis is aligned with the elongated disc formed by the satellite galaxies and have concluded that it is this drift towards the backbone of the main halo that holds the key to the satellites’ pancake-like configuration.

Far from challenging the current cosmological paradigm – the cold dark matter model – the findings of the Durham group represent a triumph of the model and indicate that a coherent picture of how galaxies like the Milky Way emerged from the Big Bang is now beginning to fall into place.

So far simulations have been confined to satellites located within 250 kiloparsecs of the galactic centre. The team are planning further simulations to investigate how widespread the formation of cosmic pancakes is. In particular, they plan to search for evidence of pancakes in structures even larger than the Milky Way, the so-called great clusters of galaxies, This will provide a further, stringent test of the cold dark matter paradigm.

Source: Royal Astronomical Society (RAS)

Explore further: The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy

Related Stories

Scientists discover the fluffiest galaxies

May 14, 2015

An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. ...

VLT discovers new kind of globular star cluster

May 13, 2015

Observations with ESO's Very Large Telescope in Chile have discovered a new class of 'dark' globular star clusters around the giant galaxy Centaurus A. These mysterious objects look similar to normal clusters, ...

The cosmic evolution of galaxies

May 11, 2015

Our knowledge of the big bang has increased dramatically in the past decade, as satellites and ground-based studies of the cosmic microwave background have refined parameters associated with the very early ...

The Dark Matter 'conspiracy'

Apr 30, 2015

Surprising gravitational similarities between spiral and elliptical galaxies have been discovered by an international team, including astronomers from Swinburne University of Technology, implying the influence ...

Fresh theories about dark matter

May 15, 2015

Tom Broadhurst, the Ikerbasque researcher in the Department of Theoretical Physics of the UPV/EHU, together with Sandor Molnar of the National Taiwan University and visiting Ikerbasque researcher at the UPV/EHU ...

Recommended for you

What was here before the solar system?

May 29, 2015

The solar system is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The solar system has nothing on the universe. It's been around for 13.8 billion years, give or take a few hundred ...

What is lunar regolith?

May 29, 2015

When you're walking around on soft ground, do you notice how your feet leave impressions? Perhaps you've tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some ...

Herschel's hunt for filaments in the Milky Way

May 29, 2015

Observations with ESA's Herschel space observatory have revealed that our Galaxy is threaded with filamentary structures on every length scale. From nearby clouds hosting tangles of filaments a few light-years ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.