Scientists watch black hole born in split-second light flash

May 11, 2005

After 30 years, they finally caught one. Scientists on Monday have for the first time detected and pinned down the location of a so-called "short" gamma-ray burst, lasting only 50 milliseconds.
The burst marks the birth of a black hole. The astronomy community is buzzing with speculation on what could have caused the burst, perhaps a collision of two older black holes or two neutron stars. A multitude of follow-up observations are planned; the answer might come in a few more days. "Everything about this gamma-ray burst so far supports the merger theory," said Steinn Sigurdsson, associate professor of astronomy and astrophysics at Penn State and a gamma-ray-burst theorist.

Gamma-ray bursts are the most powerful explosions known in the universe. Recently, the longer ones -- lasting more than two seconds -- have become easy prey for NASA satellites such as Swift, built to detect and quickly locate the flashes. Short bursts had remained elusive until Monday, when Swift detected one, autonomously locked onto a location and focused its onboard telescopes in less than a minute to capture the burst afterglow.

"Seeing the afterglow from a 'short' gamma-ray burst was a major goal for Swift, and we hit it just a few months after launch," said Neil Gehrels, Swift project scientist at NASA Goddard Space Flight Center in Greenbelt, Md. "Now, for the first time, we have real data to figure out what these things are."

Like clues left at a crime scene, the afterglow contains information about what caused the burst. Most scientists are convinced short and long bursts arise from two different catastrophic origins. The longer bursts appear to be from massive star explosions in very distant galaxies. The shorter ones -- less than two seconds and often just a few milliseconds -- are the deeper mystery because they have been simply too fast to observe in detail.

The Monday burst is called GRB 050509B. Swift's X-ray Telescope detected a weak afterglow that faded away after about five minutes. Swift's Ultraviolet/Optical Telescope did not see an afterglow. Ground-based telescopes have not yet definitely detected an afterglow either. In contrast, afterglows from long bursts linger from days to weeks.

All of this fits the pattern of a collision between some combination of black holes or neutron stars, both of which are created in the death of massive stars. Neutron stars are dense spheres about 20 miles across. Black holes have no surface and are regions in space of infinite density. Theory predicts that these kinds of collisions wouldn't produce a long afterglow because there isn't much "fuel," such as dust and gas, from the objects and in the region to sustain an afterglow.

GRB 050509B appears to have occurred near an unusual galaxy that has old stars and is relatively nearby, about 2.7 billion light years away, which also is consistent with the theory that short bursts come from older, evolved neutron stars and black holes. In contrast, longer gamma-ray bursts tend to be in young, distant galaxies filled with young, massive stars -- remnants of the early universe.

"We are combing the region around the burst with the Keck Telescope for clues about this burst or its host galaxy," said Shri Kulkarni, a gamma-ray burst expert at Caltech. "What we are seeing so far is what proponents of the merger theory have been saying all along. Such an evanescent afterglow has been expected in the most popular model for short hard bursts to date." Additional observations are planned for NASA's Hubble Space Telescope and Chandra X-ray Observatory.

For more information about this and other Swift-detected bursts, refer to

Source: Penn State

Explore further: Shocks in a distant gamma-ray burst

Related Stories

Shocks in a distant gamma-ray burst

September 14, 2015

Gamma ray bursts (GRBs)—flashes of high-energy light occur about once a day, randomly, from around the sky—are the brightest events in the known universe. While a burst is underway, it is many millions of times brighter ...

Surprising giant ring-like structure in the universe

September 7, 2015

(—Five billion light years is a distance almost inconceivable, even on a cosmic scale. To better illustrate the extent of this physical quantity, it's enough to say that 35,000 galaxies the size of our Milky Way ...

Mysterious neutrinos take the stage at SLAC

September 24, 2015

Of all known fundamental particles, neutrinos may be the most mysterious: Although they are highly abundant in the universe and were discovered experimentally in 1956, researchers still have a lot left to learn about them. ...

How the universe's brightest galaxies were born

September 23, 2015

The brightest galaxies in our universe are fuelled by what their gravity sucks in, not through explosive mergers of star systems as scientists previously argued, researchers said Wednesday.

Image: Hubble observes galaxies' evolution in slow motion

September 21, 2015

It is known today that merging galaxies play a large role in the evolution of galaxies and the formation of elliptical galaxies in particular. However there are only a few merging systems close enough to be observed in depth. ...

Researchers propose new way to chart the cosmos in 3D

September 18, 2015

If only calculating the distance between Earth and far-off galaxies was as easy as pulling out the old measuring tape. Now UBC researchers are proposing a new way to calculate distances in the cosmos using mysterious bursts ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.