How monarch butterflies are wired for navigation

May 4, 2005

In their extraordinary annual migration from North America to Mexico, monarch butterflies are known to use the angle of polarized sunlight as a celestial guide to help them keep to a straight and true path southward. But details of their navigational machinery have remained a mystery.

Now, researchers, led by Steven Reppert of University of Massachusetts Medical School, Ivo Sauman of the Czech Academy of Sciences and Adriana Briscoe of the University of California at Irvine, have explored the infinitesimal butterfly brain to uncover new insights into that machinery. Their findings show that the same ultraviolet light that has become an anathema to cancer-wary humans is critical for butterfly navigation. Also, the researchers were surprised to discover a key wiring connection between the light-detecting navigation sensors in the butterfly's eye and the creature's circadian clock--a critical link if the butterflies are to compensate for the time of day in using their "sun compass."

The researchers' techniques include molecular analysis of butterfly brain proteins, as well as flight tests in which the scientists manipulated the light reaching their insect subjects and measured the navigational response.

In their studies, the researchers discovered that ultraviolet photoreceptors dominated in the region of the butterfly visual system known to specialize in polarized light detection. To confirm that the butterflies, indeed, required ultraviolet polarized light to navigate, the researchers tested the insects in a "flight simulator," in which they could control the light polarization and thus influence the butterflies' direction of flight. The researchers found that when they placed a UV-interference filter over the polarized light source, the butterflies lost their orientation response.

The researchers also pinpointed the location of the circadian clock in the butterfly brain. Such circadian clocks govern the approximately 24 hour activity and metabolic cycles of animals from the simplest insects to humans. Reppert and his colleagues found that key genes responsible for the clock's molecular "ticks" were expressed in a brain region called the dorsolateral protocerebrum. Using tracer molecules, they were surprised to discover tiny neural fibers containing a key clock protein that connected with the polarization photoreceptors in the butterfly eye.

"This pathway has not been described in any other insect, and it may be a hallmark feature of butterflies that use a time-compensated sun compass," wrote the researchers. They also speculated that another such clock-related pathway of fibers they detected between two regions of the butterfly brain may play a role in regulating the insects' hormonal system, to induce the longevity that enables the butterfly to extend its survival in its overwintering grounds in Mexico.

Source: Cell Press

Explore further: Researchers identify new butterfly species to Hawaiian Islands

Related Stories

Color-coding sensor: Nanostructures for contactless control

September 23, 2015

Chemists at Ludwig-Maximilians-Univeristaet (LMU) in Munich have fabricated a novel nanosheet-based photonic crystal that changes color in response to moisture. The new material could form the basis for humidity-sensitive ...

Maternal experience brings an evolutionary advantage

September 22, 2015

Using a species of butterfly as an example, researchers from the Department of Environmental Sciences at the University of Basel have demonstrated how insects adapt their offspring to changing environmental conditions. The ...

Recommended for you

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

On soft ground? Tread lightly to stay fast

October 8, 2015

These findings, reported today, Friday 9th October, in the journal Bioinspiration & Biomechanics, offer a new insight into how animals respond to different terrain, and how robots can learn from them.

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.