Ignition Test of Technology Demonstrator Engine for Future Launch Vehicles a Success

May 3, 2005
Ignition Test of Technology Demonstrator Engine for Future Launch Vehicles a Success

An engine developed to demonstrate advanced rocket technologies for future launch vehicles was successfully ignited April 28 at 9:10 p.m. CDT during its test firing at NASA's Stennis Space Center near Bay St. Louis, Miss.
The initial tests on the engine, known as the Integrated Powerhead Demonstrator (IPD), were conducted at the Stennis Center's E-1 test stand. The purpose of the test series was to demonstrate the feasibility and benefits of the full-flow, staged combustion rocket engine cycle, and to demonstrate advanced engine component technologies.
The demonstrator engine test lasted 4.9 seconds. This was the third of 22 planned static ground tests of the engine.

The IPD project is the first of three phases of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology Program, which is aimed at demonstrating technologies that double the capability of state-of-the-art cryogenic booster engines. The project's goal is to develop a full-flow, hydrogen-fueled, stage combustion rocket engine.

This phase one demonstrator engine employs dual preburners that provide oxygen-rich and hydrogen-rich staged combustion. The innovative system is expected to keep engine components cooler during flight. Lowering component temperatures could provide higher engine reliability and longer life, while still maintaining the highest system efficiency attainable.

While attaining the desired objectives for the Integrated High Payoff Rocket Propulsion Technology Program, the IPD engine tests also will demonstrate many component technologies directly applicable to the goals of NASA's Exploration Systems Mission Directorate. The component and system level technologies found in the Integrated Powerhead Demonstrator engine also could dramatically increase launch safety and system reliability, and reduce the cost of future space transportation systems.

NASA's Exploration Systems Mission Directorate in Washington and the Department of Defense's Integrated High Payoff Rocket Propulsion Technology Program are jointly developing the Integrated Powerhead Demonstrator. The project is being managed by the U.S. Air Force Research Laboratory (AFRL) at Edwards Air Force Base in Calif., in cooperation with NASA's Marshall Space Flight Center in Huntsville, Ala.

The demonstrator engine is a research and development activity intended to deliver advanced propulsion technologies. The engine's unique component technologies have been produced by industry partners, Aerojet and Rocketdyne. The technologies developed will benefit many Department of Defense space-access programs, as well as NASA's goal to power future missions to the Moon and beyond -- cornerstones of the Vision for Space Exploration. The Vision seeks to expand human and robotic exploration of the Solar System.

Source: NASA

Explore further: Bioart: An introduction

Related Stories

Bioart: An introduction

November 23, 2015

Joe Davis is an artist who works not only with paints or pastels, but also with genes and bacteria. In 1986, he collaborated with geneticist Dan Boyd to encode a symbol for life and femininity into an E. coli bacterium. The ...

Versatile single-chip sensor for ion detection in fluids

November 24, 2015

Imec and Holst Centre (set-up by imec and TNO) have demonstrated a prototype of a single-chip electrochemical sensor for simultaneous detection of multiple ions in fluids. The demonstrator paves the way to small-sized and ...

Electric fields remove nanoparticles from blood with ease

November 23, 2015

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a ...

Solid electrolyte interphases on lithium metal anode

November 23, 2015

The prestigious Advanced Science journal has just published a review paper on solid electrolyte interphases of lithium metal anodes contributed by Prof. Qiang Zhang in Tsinghua University, China and Ji-Guang Zhang in Pacific ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.