Deep Impact correction maneuver successful

May 16, 2005

Fifty-nine days before going head-to-head with comet Tempel 1, NASA's Deep Impact spacecraft successfully executed the second trajectory correction maneuver of the mission.
The burn further refined the spacecraft's trajectory, or flight path, and also moved forward the expected time of the Independence Day comet encounter so impact would be visible by ground- and space- based observatories.

The 95-second burn – the longest remaining firing of the spacecraft's motors prior to comet encounter -- was executed on May 4. It changed Deep Impact's speed by 18.2 kilometers per hour (11.3 miles per hour).

"Spacecraft performance has been excellent, and this burn was no different," said Rick Grammier, Deep Impact project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It was a textbook maneuver that placed us right on the money."

Right on the money is where Deep Impact has to be to place a 1-meter- long (39-inch) impactor spacecraft in the path of a comet about as big as the island of Manhattan that is bearing down on it at 37,100 kilometers per hour (6.3 miles per second). At the same time, from a very comet-intimate distance of 500 kilometers (310 miles), a flyby spacecraft will be monitoring the event. This all occurs in the wee hours of July 4 – at 1:52 am Eastern time (July 3, 10:52 p.m. Pacific time) -- at a distance of 133.6-million kilometers (83- million miles) from Earth.

"With this maneuver our friends working the Hubble Space Telescope are assured a ringside seat," said Deep Impact Principal Investigator Dr. Michael A'Hearn of the University of Maryland, College Park. "Their observations, along with space telescopes Chandra and Spitzer and numerous ground-based observatories, will provide us with the most scientific bang for our buck with Deep Impact."

Deep Impact is comprised of two parts, a "flyby" spacecraft and a smaller "impactor." The impactor will be released into the comet's path before a planned high-speed collision on July 4. The crater produced by the impact could range in size from the width of a large house up to the size of a football stadium, and from 2 to 14 stories deep. Ice and dust debris will be ejected from the crater, revealing the material beneath.

The Deep Impact spacecraft has four data collectors to observe the effects of the collision. A camera and infrared spectrometer, which comprise the High Resolution Instrument, are carried on the flyby spacecraft, along with a Medium Resolution Instrument. A duplicate of the Medium Resolution Instrument on the impactor will record the vehicle's final moments before it is run over by comet Tempel 1 at a speed of about 37,100 kilometers per hour (23,000 miles per hour).

Source: NASA

Explore further: CubeSats in deep space

Related Stories

CubeSats in deep space

November 3, 2015

(—Tiny spacecraft have their ambitions of space exploration too. The small-sized satellites called CubeSats, made of box-shaped four-inch units, are successfully operating in the low Earth orbit, conducting a variety ...

CubeSats to an asteroid

November 3, 2015

The five CubeSat concepts to be studied to accompany ESA's proposed Asteroid Impact Mission into deep space have been selected.

Saturn's moon Tethys

October 26, 2015

Thanks the Voyager missions and the more recent flybys conducted by the Cassini space probe, Saturn's system of moons have become a major source of interest for scientists and astronomers. From water ice and interior oceans, ...

Saturn's "Death Star" moon Mimas

October 26, 2015

Much has been learned about Saturn's system of moons in recent decades, thanks to the Voyager missions and the more recent surveys conducted by the Cassini spaceprobe. Between its estimated 150 moons and moonlets (only 53 ...

Uranus' "sprightly" moon Ariel

November 2, 2015

The outer Solar System has enough mysteries and potential discoveries to keep scientists busy for decades. Case in point, Uranus and it's system of moons. Since the beginning of the Space Age, only one space probe has ever ...

Rosetta and Philae—one year since landing on a comet

November 13, 2015

One year since Philae made its historic landing on a comet, mission teams remain hopeful for renewed contact with the lander, while also looking ahead to next year's grand finale: making a controlled impact of the Rosetta ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.