Scientists control super fast frequencies by using high temperature superconductors

April 18, 2005
Scientists control super fast frequencies

Imagine an imaging technology that could see deep into human tissue without the harmful side effects of radiation. Super-fast oscillations of radio waves, called terahertz (THz) have that promise, but so far, controlling them has been beyond reach.
But now, by using layered high temperature superconductors, researchers at the University of Michigan and RIKEN, Japan have proposed a way to cherry pick these ultra-fast waves, letting only certain waves pass through, similar to how we tune a radio.

Image: The array of green cylinders inside the sample, forming a so-called photonic crystal, span the width of the sample. These cylinders contain a magnetic field, and act somewhat similarly to bumpers in a pinball machine, scattering the incident electromagnetic waves, shown in red. Only red waves with certain frequencies can propagate through the crystal, resulting in the outgoing transmitted wave shown in green. The rest bounce back, shown as the reflected blue waves.

This tunable filter uses a superconducting material with a regular array of spaghetti-shaped magnetic field lines, known as a Josephson vortex lattice, said U-M Physicist Franco Nori, one of the principal investigators on the project. The filter works similarly to the way bumpers on a pinball machine deflect the ball. The result is that the arrangement of "bumpers" creates frequency gaps that the waves can't penetrate. These band gap structures are referred to as "terahertz photonic crystals."

Scientists are able to "tune" the bumpers by changing an externally applied electromagnetic field, thus selecting which frequencies to let through, and which to keep out, similar to how a radio dial selects some frequencies and weeds out others.

This sort of "tuning" is important to developing coherent images with high-frequency radio waves.

Terahertz waves—a trillion oscillations per second—occupy a large portion of the electromagnetic spectrum between the infrared and microwave bands. Although they are considered the next frontier in imaging science, no reliable means of harnessing and controlling this high frequency has been developed, said Nori.

"To push beyond the gigahertz range of frequencies has been very difficult because the waves oscillate so fast that most electronics can't keep up," Nori said. "Indeed if you look at standard computer chips, it is hard to go beyond a few gigahertz. When you go beyond 100 gigahertz, you approach the terahertz range, the next frontier. The poor circuits just can't keep up."

Terahertz radiation represents the last unexplored frontier of the radio wave and light spectrum, Nori said. Terahertz waves can penetrate deep into many organic materials—such as tissue—without the damage associated with ionizing radiation such as X-rays. Also, terahertz radiation can be used to distinguish between materials with varying water content, such as fat versus lean meat. These properties lend themselves to applications in biomedical imaging, as well as quality control. Terahertz radiation can also help scientists understand the complex dynamics involved in materials.

"This is an exciting new frontier, with new research centers on this being started in different parts of the world," Nori said.

A paper on the research, "Using Josephson Vortex Lattices to Control THz Radiation: Tunable Transparency and THz Photonic Crystals," is to appear in the April 29 Physical Review Letters. Collaborators are Sergey Savel'ev and A.L. Rakhmanov from The Institute of Physical and Chemical Research (RIKEN), Japan.

Source: University of Michigan

Explore further: Building a bright future for lasers

Related Stories

Building a bright future for lasers

November 15, 2016

Invisible to the human eye, terahertz electromagnetic waves can "see through" everything from fog and clouds to wood and masonry—an attribute that holds great promise for astrophysics research, detecting concealed explosives ...

Light-driven atomic rotations excite magnetic waves

October 24, 2016

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how the ultrafast light-induced modulation of the atomic positions ...

New metamaterial paves way for terahertz technologies

October 24, 2016

A research team led by UCLA electrical engineers has developed an artificial composite material to control of higher-frequency electromagnetic waves, such as those in the terahertz and far-infrared frequencies.

Researchers bring theorized mechanism of conduction to life

October 3, 2016

Humans have harnessed large portions of the electromagnetic spectrum for diverse technologies, from X-rays to radios, but a chunk of that spectrum has remained largely out of reach. This is known as the terahertz gap, located ...

Recommended for you

Atlas of the RNA universe takes shape

December 7, 2016

As the floor plan of the living world, DNA guides the composition of animals ranging from unicellular organisms to humans. DNA not only helps shepherd every organism from birth through death, it also plays an essential role ...

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.