Scientists model physics of stellar burning

Apr 15, 2005

A University of California scientist at Los Alamos National Laboratory working with astronomers from around the world recently validated a computer model that predicts the rebirth and stellar burning and mixing processes of evolved stars. The discovery is a leap forward in our understanding of how stars like the sun evolve through violent outbursts during their evolution.

In research published recently in the journal Science, Laboratory astrophysicist Falk Herwig and his colleagues describe how Herwig’s computer model was recently corroborated by radio telescope observations made at the Very Large Array (VLA) in Socorro, N.M. The radio signals collected by the VLA indicate that a star in the constellation Sagittarius known as V4334 Sgr, or Sakurai's Object, is about to re-illuminate it’s planetary nebula for the second time, initiating a new phase in the spectacular evolution of this enigmatic star. This never before seen event is another step in a complex chain of events initially triggered by a nuclear burst after the star had already become a hot white dwarf.

Computer simulations of the stellar outburst made nearly 10 years ago by Herwig and others had predicted this series of physics events that would lead up to the rejuvenated planetary nebula. However, V4334 Sgr failed to follow the script as events moved many times more quickly than the simulations predicted. In 2001, Herwig proposed a new fast-evolving model, claiming the problem may be the way in which nuclear burning and rapid mixing was simulated.

Stars typically evolve into white dwarfs and die when they have used up most of their hydrogen, but about a quarter of them, like V4334 Sgr, experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in the outer regions is drawn into the helium shell through rapid mixing, causing a massive nuclear explosion. This burst of energy will expand the dying star to gigantic proportions and lower surface temperatures and, in the process, expel prodigious amounts of carbon. V4334 Sgr has just evolved through this phase.

Herwig’s new model predicts that V4334 Sgr will now become much hotter very rapidly and will then slowly repeat the stellar rebirth cycle once more, returning to its current cooler temperature in roughly two hundred years. Only then follows the final episode of reheating for a third time before V4334 Sgr eventually will become an inactive cooling white dwarf.

In addition to Herwig, who works in the Laboratory's Theoretical Division, the stellar burning team included Marcin Hajduk of the University of Manchester and Centrum Astronomii UMK; Peter A.M. van Hoof of Queen's University in Belfast and the Royal Observatory of Belgium; Florian Kerber of the European Southern Observatory in Germany; Stefan Kimeswenger of the University of Innsbruck, Austria; Don Pollacco of Queen's University in Belfast; Aneurin Evans of Keele University in Staffordshire, UK; Jose Lopez of the National Autonomous University of Mexico in Ensenada; Myfanwy Bryce of Jodrell Bank Observatory in the UK; Stewart P.S. Eyres of the University of Central Lancashire in the UK; and Albert Zijlstra and Mikako Matsuura of the University of Manchester.

Source: Los Alamos National Laboratory

Explore further: We're not alone—but the universe may be less crowded than we think

Related Stories

NSV 11749 - born again and grown old

Dec 05, 2011

In 1996, a Japanese amateur astronomer discovered a new star in the constellation Sagittarius. Dubbed V4334 Sgr, astronomers initially expected it to be a typical novae, but closer examination revealed it ...

Recommended for you

Rosetta spacecraft sees sinkholes on comet

11 hours ago

The European Space Agency's Rosetta spacecraft first began orbiting comet 67P/Churyumov-Gerasimenko in August 2014. Almost immediately, scientists began to wonder about several surprisingly deep, almost perfectly ...

Observing the birth of a planet

12 hours ago

Astronomers at ETH Zurich have confirmed the existence of a young giant gas planet still embedded in the midst of the disk of gas and dust surrounding its parent star. For the first time, scientists are able ...

Me and my world: The human factor in space

13 hours ago

The world around us is defined by how we interact with it. But what if our world was out of this world? As part of NASA's One-Year Mission, researchers are studying how astronauts interact with the "world" ...

Radar guards against space debris

15 hours ago

Space debris poses a growing threat to satellites and other spacecraft, which could be damaged in the event of a collision. A new German space surveillance system, schedu- led to go into operation in 2018, will help to prevent ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.