Fishing up chromosomes

April 23, 2005

Researchers at the University of Dundee have made a significant new discovery on how cells behave and protect themselves against cancers and congenital disorders as reported in Nature on April 21.
Dr Tomo Tanaka and his team members at the University's School of Life Sciences, Drs Kozo Tanaka, Naomi Mukae and Hilary Dewar, in collaboration with Drs Euan James and Alan Prescott and researchers in Germany, have uncovered how cells prepare for the process of chromosome separation.

All human cells, except eggs and sperms, contain 46 chromosomes, all of which carry vital genetic information. Because genetic information is crucial for the proper function of cells for the organs and tissues that they organise, all chromosomes must be precisely copied and separated into two cells, known as the daughter cells, during each cell division. Otherwise cells would die, become transformed into cancer cells, or cause congenital diseases such as Down's syndrome.

Cells regulate chromosome separation by a network of threads called microtubules. To prepare chromosome separation, the microtubule network must first capture chromosomes. However, how microtubules capture chromosomes has until now been a complete mystery. By visualizing this step in live cells, the research team has successfully analysed the crucial but so-far concealed process.

Dr Tomo Tanaka says "We can liken chromosomes to big fishes that must be caught. To catch the fishes, cells are equipped with sophisticated fishing lines that are called microtubules. Our study discovered which parts of 'fishes' are hooked up on the 'fishing line' and how 'fishes' are pulled in using the 'fishing line'. Very interestingly, the strength of the 'fishing line' is enhanced only when 'fishes' are caught on the line. We discovered how cells make this happen. I do not think any grand master of fishing can beat cells in our body, whose 'fishing lines' or microtubules are never broken when they pull gigantic 'fishes' out of water."

The research team believes that this is one of the most crucial steps on how cells assure their chromosome inheritance during their divisions to prevent cell death, cancers and other diseases. The team is currently trying to discover what 'baits' are used to attract 'big fishes' towards 'fishing lines'.

Dr Tomo Tanaka is a Wellcome Trust Career Development Fellow and Principal Investigator in the Division of Gene Regulation and Expression based in the Wellcome Trust Biocentre at the University of Dundee’s School of Life Sciences. The research is funded by The Wellcome Trust and Cancer Research UK.

Source: University of Dundee

Explore further: Researchers develop fast test for invasive carp

Related Stories

Researchers develop fast test for invasive carp

August 11, 2015

A Case Western Reserve University graduate student turned a research paper into a field test that quickly determines whether an Asian carp invading Lake Erie is sterile or can reproduce.

The mystery of the instant noodle chromosomes

July 23, 2015

A group of researchers from the Lomonosov Moscow State University tried to address one of the least understood issues in the modern molecular biology, namely, how do strands of DNA pack themselves into the cell nucleus. Scientists ...

Fish prone to melanoma get DNA decoded

April 15, 2013

Scientists at Washington University School of Medicine in St. Louis and elsewhere have decoded the genome of the platyfish, a cousin of the guppy and a popular choice for home aquariums. Among scientists, the fish are meticulously ...

Fruit flies crucial to basic research

March 30, 2015

The world around us is full of amazing creatures. My favorite is an animal the size of a pinhead, that can fly and land on the ceiling, that stages an elaborate (if not beautiful) courtship ritual, that can learn and remember… ...

Recommended for you

Just how good (or bad) is the fossil record of dinosaurs?

August 28, 2015

Everyone is excited by discoveries of new dinosaurs – or indeed any new fossil species. But a key question for palaeontologists is 'just how good is the fossil record?' Do we know fifty per cent of the species of dinosaurs ...

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

Fractals patterns in a drummer's music

August 28, 2015

Fractal patterns are profoundly human – at least in music. This is one of the findings of a team headed by researchers from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Harvard University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.