Got NOx?

March 18, 2005

Pacific Northwest National Laboratory researchers have developed a new cost effective and energy efficient method for reducing oxides of nitrogen, or NOx, in diesel engine emissions. Called the reformer assisted catalysis, the process is three-fold -- "syngas" production, reductant synthesis and catalytic reduction of NOx in emissions.

Though they are the dominant choice in commercial trucks and heavy equipment, diesel engines are burdened with significant NOx emissions, which can affect breathing, visibility, vegetation growth, metals, fabrics and dyes.

In the most recent data collected by the U.S. Bureau of Transportation, national NOx emissions in 2001 were more than 22 million tons. As regulatory requirements on exhaust emissions become more stringent, reduction of nasty pollutants has become a high priority in automotive and other commercial industries.

PNNL began to work on this problem more than 10 years ago. Researchers developed a plasma facilitated catalyst, but recognized that a more energy- and cost-efficient system could be built, leading to the development of the reformer assisted catalysis.

The process includes treating hydrocarbon in a reformer before being introduced into the exhaust; diesel is then extracted from the fuel tank and reformed into syngas, a mixture of hydrogen and carbon monoxide.

Next, the mixture is chemically converted to dimethyl ether, which has proved to be highly selective for NOx reduction, from the syngas stream.

In the final step, catalysis, the ether mixture is injected into the exhaust, enhancing the performance of certain catalysts that allow for significant NOx reduction. Researchers took advantage of the earlier plasma catalysis system that offered changing the chemistry of the fuel to generate a better catalysis. They changed the process slightly to retain the oxygenated fuel in the exhaust, making it more cost and energy efficient.

Researchers plan to test the process on a small engine late this year.

Source: PNNL

Explore further: NOx gases in diesel car fumes: Why are they so dangerous?

Related Stories

Device burns fuel with almost zero emissions

June 21, 2006

Georgia Tech researchers have created a new combustor (combustion chamber where fuel is burned to power an engine or gas turbine) designed to burn fuel in a wide range of devices - with next to no emission of nitrogen oxide ...

Cooperative SO2 and NOx aerosol formation in haze pollution

January 29, 2014

Air pollution in China has exhibited noticeable changes over the past 30 years, shifting from point-source pollution (around factories and industrial plants) in the 1980s to urban pollution in the 1990s. Since the start of ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.