Newly Discovered Pathway Might Help in Design of Cancer Drugs

March 15, 2005

Johns Hopkins chemists have discovered a new way to sabotage DNA's ability to reproduce, a finding that could eventually lead to the development of new anti-cancer drugs and therapies.
The method could enable future doctors to target treatment more precisely, rather than directing chemotherapeutic medication or radiation to tumors through a scattershot approach, said Marc Greenberg (pictured at right), a chemistry professor in the university's Zanvyl Krieger School of Arts and Sciences, who presented his team's findings today at the 229th American Chemical Society Meeting in San Diego.

"What we did was to identify a way to create a very damaged form of DNA that is often more deadly to the cell than other types of damage," said Greenberg. "That's how many anti-tumor medications — medications such as mitomycin c — work: They kill off tumors by linking up with the cancer cells' DNA and sticking its genetic code together so it dies. Our discovery takes that a step further, establishing that there is a way to efficiently create this type of damage by modifying the DNA itself ."

In the lab, Greenberg and his team used organic chemistry to create a synthetic, double-stranded DNA with special chemical characteristics and exposed it to long wavelength light that selectively switches on the DNA damage process.

He said that the synthetic DNA is very similar to that which is produced when cells are exposed to radiation, with one exception: Greenberg's team's DNA was damaged at only one place on its chain, allowing the researchers to study it and learn about that particular chemical pathway in detail.

"Exposing DNA to radiation is like hitting a fine piece of crystal stemware with a hammer. It shatters, and looking for a particular chemical pathway is like looking for a needle in a haystack," the chemist explained. "What we did was more like carrying out a precision attack. It let us get a closer look."

Source: Johns Hopkins University

Explore further: An introduction to start-ups in synthetic biology

Related Stories

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

Unfolding the mysteries of DNA origami

August 20, 2015

Experiments performed by a University of York physicist have provided new insights into how DNA assembles into nanostructures, paving the way for more precise use in technology and medicine.

Recommended for you

On soft ground? Tread lightly to stay fast

October 8, 2015

These findings, reported today, Friday 9th October, in the journal Bioinspiration & Biomechanics, offer a new insight into how animals respond to different terrain, and how robots can learn from them.

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.