New microscopy advances biological imaging to nanoscale

March 28, 2005

Scanning probe microscopes, usually applied to imaging inorganic materials at nano- to microscopic scales, may soon be giving researchers new insights into the biomechanical structures and functions of living organisms—for example, nature's engineering of a butterfly's wing.

Sergei Kalinin, a Eugene P. Wigner Fellow at DOE's Oak Ridge National Laboratory, and Alexei Gruverman, a research professor at North Carolina State University, have obtained images of the structure of a Vanessa virginiensis (American Lady) butterfly's wing at approximately 10 nanometer resolution.

Their experiment demonstrates that emerging advances in scanning probe microscopy can be applied to more than hard inorganic materials such as superconductors and semiconductors. Although the images are “a proof of concept” it is a concept that could eventually provide clues to the functionality of complex hierarchical biological systems such as bones, teeth and other biological tissues.

Nevertheless, even the early results provide clues to the complex structure behind the elasticity and relative durability of the splendidly functional butterfly wing.

“Scanning probe microscopy provides unlimited opportunities for understanding material structure, properties, and functionality at all length scales,” says Kalinin . “This will pave the way to better and cheaper materials for biological and medical applications.”

Kalinin's and Gruverman's work with imaging biological systems has its roots in the development of atomic force microscopy in the 1980s. Now they are using a technique called Atomic Force Acoustic microscopy, AFAM, which uses tiny blasts of sound to probe not only the surface but also the subsurface structures of delicate biological materials, with approximately five nanometer resolution.

“This improved imaging sheds lights on how biological systems work, down to the five-nanometer resolutions, which is comparable to the size of a DNA molecule-about as small as you need for biological materials,” says Kalinin. “Biosystems, because they are not ordered like, for instance, crystalline materials, require real-space imaging of local elastic properties and structure. Scanning probe microscopes are a wonderful tool that is suited for exactly this purpose.”

“Scanning probe microscopy is a key to the advancement of nanoscience,” says Kalinin . “It is a new field and it develops rapidly, so novel methods appear virtually overnight. However, it takes a sustained interdisciplinary effort before true potential of SPM is realized.”

Source: Oak Ridge National Laboratory

Explore further: Peptides as tags in fluorescence microscopy

Related Stories

Peptides as tags in fluorescence microscopy

November 30, 2016

Fluorescence microscopy visualizes the molecular elements of cells. Proteins of nerve cells, for instance, can be labelled using probes which are subsequently excited with light to fluoresce. In the end, the fluorescence ...

Movement of mTORC1 observed for the first time in live cells

October 11, 2016

What do proteins and wild bears have in common? Just like tagging wild animals aims to allow researchers to observe and track their natural behaviour, molecular researchers use tags to track the minute movements of proteins ...

Recommended for you

Cow gene study shows why most clones fail

December 9, 2016

It has been 20 years since Dolly the sheep was successfully cloned in Scotland, but cloning mammals remains a challenge. A new study by researchers from the U.S. and France of gene expression in developing clones now shows ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.