Researchers Unlock Mechanism Creating Jigsaw Puzzle-Like Plant Cells

March 10, 2005
Arabidopsis leaf microtubules

Researchers at the University of California, Riverside have unlocked the molecular give and take that allows cells in thin structures such as leaves to develop in a jigsaw-like pattern, providing the leaf a surprising degree of strength. The findings were published in today’s edition of the journal Cell.

Image: Arabidopsis leaf microtubules

Zhenbiao Yang, a professor of plant cell biology at the UCR’s Center for Plant Cell Biology and Institute for Integrative Genome Biology, worked with a team of researchers which included Geoffrey Wasteneys from the University of British Columbia, Vancouver; fellow UCR colleagues Ying Fu, Ying Gu, and Zhiliang Zheng.

The findings, described in a paper titled “Arabidipsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis,” explained a complicated and coordinated series of chemical interactions in a group of cellular proteins, known as GTPases (guanosine triphosphatases) that act as molecular switches, which regulate how plant cells grow into interlocking patterns resembling jigsaw puzzle pieces.

These proteins tell one part of a cell to grow outward while telling its neighbor to recede or indent itself in a finely tuned biological dance. The results are structures that, despite their delicate appearance and slenderness, provide the strength necessary to allow the plant to grow and thrive.

The findings point out that these distinct signals play a critical role in the development of leaf cell walls and leaf structures in a controlled and ordered way and that genetically over expressing one or the other leads to cells lacking the interlocking jigsaw puzzle appearance.

While the researchers unlocked a fascinating mechanism of biochemical crosstalk that coordinates cells into tissues, a deeper understanding of how plant cells chemically talk to each other to grow or recede in an ordered way remains unclear.

Source: University of California, Riverside

Explore further: Cleaning up bunker oil with white rot fungi

Related Stories

Why do mitochondria retain their own genome?

July 24, 2015

It sounds like science fiction to suggest that every cell in the human body is occupied by a tiny genome-equipped organelle, with which we exist in symbiosis. But in actuality, eukaryotic life is dependent on mitochondria, ...

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

RNA insecticide could target specific pests

July 21, 2015

A novel insecticide targets a specific gene in a pest, killing only that bug species on crops and avoiding collateral damage to beneficial insects caused by today's pesticides.

Recommended for you

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.