Researchers Unlock Mechanism Creating Jigsaw Puzzle-Like Plant Cells

March 10, 2005
Arabidopsis leaf microtubules

Researchers at the University of California, Riverside have unlocked the molecular give and take that allows cells in thin structures such as leaves to develop in a jigsaw-like pattern, providing the leaf a surprising degree of strength. The findings were published in today’s edition of the journal Cell.

Image: Arabidopsis leaf microtubules

Zhenbiao Yang, a professor of plant cell biology at the UCR’s Center for Plant Cell Biology and Institute for Integrative Genome Biology, worked with a team of researchers which included Geoffrey Wasteneys from the University of British Columbia, Vancouver; fellow UCR colleagues Ying Fu, Ying Gu, and Zhiliang Zheng.

The findings, described in a paper titled “Arabidipsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis,” explained a complicated and coordinated series of chemical interactions in a group of cellular proteins, known as GTPases (guanosine triphosphatases) that act as molecular switches, which regulate how plant cells grow into interlocking patterns resembling jigsaw puzzle pieces.

These proteins tell one part of a cell to grow outward while telling its neighbor to recede or indent itself in a finely tuned biological dance. The results are structures that, despite their delicate appearance and slenderness, provide the strength necessary to allow the plant to grow and thrive.

The findings point out that these distinct signals play a critical role in the development of leaf cell walls and leaf structures in a controlled and ordered way and that genetically over expressing one or the other leads to cells lacking the interlocking jigsaw puzzle appearance.

While the researchers unlocked a fascinating mechanism of biochemical crosstalk that coordinates cells into tissues, a deeper understanding of how plant cells chemically talk to each other to grow or recede in an ordered way remains unclear.

Source: University of California, Riverside

Explore further: Scientists identify the signals plants use to survive in salty soils

Related Stories

3-D live imaging reveals how plants grow new lateral roots

September 27, 2016

Researchers have used 3-D live imaging to observe the formation process of lateral roots in plants, and clarified part of the mechanism that creates new meristematic tissue. If the root formation mechanism in plants is revealed ...

Recommended for you

Fermi finds record-breaking binary in galaxy next door

September 29, 2016

Using data from NASA's Fermi Gamma-ray Space Telescope and other facilities, an international team of scientists has found the first gamma-ray binary in another galaxy and the most luminous one ever seen. The dual-star system, ...

Game theory research reveals fragility of common resources

September 29, 2016

New research in game theory shows that people are naturally predisposed to over-use "common-pool resources" such as transportation systems and fisheries even if it risks failure of the system, to the detriment of society ...

Scientists: World likely won't avoid dangerous warming mark

September 29, 2016

A team of top scientists is telling world leaders to stop congratulating themselves on the Paris agreement to fight climate change because if more isn't done, global temperatures will likely hit dangerous warming levels in ...

Tech titans join to study artificial intelligence

September 29, 2016

Major technology firms have joined forces in a partnership on artificial intelligence, aiming to cooperate on "best practices" on using the technology "to benefit people and society."

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.