Researchers develop impurity-free process for powder injection molding of titanium components

March 8, 2005

New method could reduce fabrication costs and increase use of titanium and other metals

Researchers at the Department of Energy's Pacific Northwest National Laboratory have developed a new method for powder injection molding of titanium and similar materials to form components for advanced engineering applications.
Titanium offers high specific strength and excellent corrosion resistance, making it ideally suited to the automotive, aerospace, chemical production and biomedical equipment industries. However, use of injection molded titanium components has been severely limited by alloy impurities directly attributable to the current process.

The PNNL method overcomes these problems, allowing powder injection molding to be readily used in preparing components from alloys of titanium, tungsten, and niobium, as well as other reactive refractory materials. The key to the PNNL process is a proprietary binder that is cleanly removed during sintering and leaves no impurities that can cause degradation in material properties.

In addition, the porosity of components produced by the PNNL process can be tailored for a variety of specialized applications, including the design of self-lubricating parts and biomedical implants. This is accomplished by including easily removed fugitive phases in the powder mixture and by controlling the subsequent debinding and sintering heat treatments.

Derived from plastic injection molding, powder injection molding employs a mixture of metal powder and polymeric binder. It is a well established, cost-effective method of fabricating large volumes of small- to moderate-size, net shape components and can be used to produce parts of complex shape. Because fabrication temperatures are relatively low (~150 - 250°C), the molds employed in powder injection molding are less expensive than those used in other forming techniques, such as die casting or forging.

Source: Pacific Northwest National Laboratory

Explore further: First powder injection molding process for pure niobium

Related Stories

First powder injection molding process for pure niobium

October 17, 2005

Penn State researchers have developed the first powder injection molding process for pure niobium, a biocompatible material similar to platinum and titanium but cheaper. The researchers, who are based in the University's ...

Savvy injection molding

April 2, 2010

( -- With the help of neural networks, in which complex algorithms are used to monitor critical process steps, engineers are paving the way for zero-defect production in the area of metal powder injection molding. ...

Ames Laboratory beefing up magnets for electric-drive cars

January 9, 2008

Ask Iver Anderson at the U.S. Department of Energy’s Ames Laboratory about consumer interest in and desire for “ultragreen” electric-drive vehicles, and he’ll reply without a moment’s hesitation that the trend is ...

Fewer surgeries with degradable implants

November 4, 2014

Until now, in cases of bone fracture, doctors have used implants made of steel and titanium, which have to be removed after healing. To spare patients burdensome inter- ventions, researchers are working on a bone substitute ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.