Hassled galaxy 'thriving on chaos'

March 11, 2005

Powerful but unknown forces are at work in a small companion galaxy of the Milky Way, astronomers say in today's issue of the journal Science.
Something is keeping the structure and magnetic field of this galaxy–the Large Magellanic Cloud–strong and ordered, even while the Milky Way's gravity works to tear them apart.
A team led by Bryan Gaensler of the Harvard­Smithsonian for Astrophysics used the CSIRO Australia Telescope near Narrabri in NSW to study the galaxy's magnetic field.

"This is the most detailed map ever made of another galaxy's magnetism," says Gaensler.

At just 160 000 light-years away the Large Magellanic Cloud, or LMC, is the Milky Way's closest neighbour and is being clawed apart by the Milky Way's gravity. The researchers were surprised that the LMC's magnetic field is so smooth and ordered, given the internal turmoil the galaxy must experience.

"It's like having a birthday party all afternoon for a bunch of 4-year-olds, and then finding the house still neat and tidy when they leave," Gaensler says. "Some powerful forces must be at work to keep the magnetic field from being messed up."

The Milky Way and many other large spiral galaxies have well-organised, large-scale magnetic fields. It's thought that the overall rotation of these galaxies combines and smooths out the small-scale magnetic fields created by whirls and eddies of gas. The process is called a 'dynamo', and is similar to the process that produces the Earth's magnetic field.

"But if a galaxy experiences sudden bursts of star formation or supernova explosions, the energy that these processes release should completely disrupt the large-scale magnetic field," says Lister Staveley-Smith of the CSIRO Australia Telescope National Facility. "And we know the LMC has had those kind of violent events over the last several thousand million years," he says.

So what keeps the LMC's magnetic field in order? There are several possibilities, the researchers say, but the process they favour is one driven by extremely energetic particles called 'cosmic rays'. This would take effect more quickly than the conventional dynamo mechanism. It also requires vigorous star formation to operate, so "stars bursting out at random all over would strengthen the magnetic field, not mess it up," says Gaensler. "You could say this galaxy is thriving on chaos."

Source: CSIRO

Explore further: Tangled threads weave through cosmic oddity

Related Stories

Tangled threads weave through cosmic oddity

December 1, 2016

New observations from the NASA/ESA Hubble Space Telescope have revealed the intricate structure of the galaxy NGC 4696 in greater detail than ever before. The elliptical galaxy is a beautiful cosmic oddity with a bright core ...

Bright radio bursts probe universe's hidden matter

November 17, 2016

Fast radio bursts, or FRBs, are mysterious flashes of radio waves originating outside our Milky Way galaxy. A team of scientists, jointly led by Caltech postdoctoral scholar Vikram Ravi and Curtin University research fellow ...

What are active galactic nuclei?

November 9, 2016

In the 1970s, astronomers became aware of a compact radio source at the center of the Milky Way Galaxy – which they named Sagittarius A. After many decades of observation and mounting evidence, it was theorized that the ...

Project to map the history of the Milky Way

November 28, 2016

Our galaxy, the Milky Way, contains at least 100 billion stars. Over the centuries, astronomers have scoured the skies, developing a thorough understanding of the lives of those stars, from their formation in vast nebulae ...

Recommended for you

Earth's days getting longer: study

December 7, 2016

Earth's days are getting longer but you're not likely to notice any time soon—it would take about 6.7 million years to gain just one minute, according to a study published on Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.