Tiny Brown Dwarf's Disk May Form Miniature Solar System

February 9, 2005

Using the Spitzer Space Telescope, a team of astronomers led by Kevin Luhman (Harvard-Smithsonian Center for Astrophysics) has discovered a protoplanetary disk around a surprisingly low-mass brown dwarf. This remarkable finding raises the possibility of planet formation around objects that themselves have planetary masses. Moreover, the presence of a disk suggests that terrestrial planets could form and thrive orbiting an object too small to shine via nuclear fusion.

"It's an exciting possibility-one that hasn't been explored extensively because this is the first evidence for the building blocks of planets around such a small object," said Luhman.

The team's findings were presented today in a press conference at the Planet Formation and Detection meeting in Aspen, Colorado, and will be published in the Feb. 10th issue of The Astrophysical Journal Letters.

The brown dwarf in question, OTS 44, is located approximately 500 light-years away in the southern constellation Chamaeleon. OTS 44 weighs in at around 15 Jupiter masses, placing it near the dividing line between brown dwarfs (generally defined as objects of 15-70 Jupiter masses) and planets. At a temperature of 3,600° F (2300 Kelvin), OTS 44 is the coolest and least massive brown dwarf known to have a circumstellar disk.

Although the team cannot measure the total mass of the disk, it likely contains enough matter to make one small gas giant or several Earth-sized planets. "This brown dwarf and its disk could eventually evolve into a miniature version of our solar system," said Luhman.

Due to the brown dwarf's low temperature, an Earth-sized world would have to orbit much closer to the brown dwarf than the Earth from the Sun in order to be as warm as Earth. Theorists estimate that liquid water could exist on the surface of a planet about 1 to 4 million miles from the brown dwarf. The disk of OTS 44 extends beyond both sides of this "habitable zone."

Without nuclear fusion to sustain it, the brown dwarf will gradually cool and dim. If an Earth-sized world forms near the brown dwarf, it will be scorching at first, then grow cooler and more hospitable over time. Since the brown dwarf cools more slowly as it gets older, such a planet could remain in the habitable zone for an extended time, raising the intriguing possibility that life might evolve.

"That is pure speculation, of course. But finding a circumstellar disk around such a small brown dwarf certainly widens the possibilities for planet formation," said Luhman.

The researchers plan to search for similar disks around other nearby brown dwarfs. Spitzer revealed the disk of OTS 44 in only 20 seconds of observing time. Further searches may locate similar disks around even smaller central objects of 10 Jupiter masses or less.

The team detected OTS 44's circumstellar disk using Spitzer's Infrared Array Camera, or IRAC. IRAC data showed an excess of infrared emission at long wavelengths-the signature of a dusty disk that absorbs radiation from the brown dwarf, heats up, and re-radiates the energy in the infrared.

Explore further: Gemini Planet Imager Exoplanet Survey—one year into the survey

Related Stories

The galaxy's ancient brown dwarf population revealed

November 20, 2013

(Phys.org) —A team of astronomers led by Dr David Pinfield at the University of Hertfordshire have discovered two of the oldest brown dwarfs in the Galaxy. These ancient objects are moving at speeds of 100-200 kilometres ...

Smashing young stars leave dwarfs in their wake

June 9, 2006

Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own.

Brown dwarf pair mystifies astronomers

December 21, 2009

(PhysOrg.com) -- Two brown dwarf-sized objects orbiting a giant old star show that planets may assemble around stars more quickly and efficiently than anyone thought possible, according to an international team of astronomers.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.