Super-heavy nuclei take shape in 'extreme' new theories

February 17, 2005
Z=110-113 alpha-decay chains found at GSI

Advanced computational methods and supporting experiments, including work performed at the Department of Energy's Oak Ridge National Laboratory, are giving scientists a better understanding of the nature and stability of superheavy nuclei and the heaviest elements that lie beyond the borders of the periodic table.

Nature magazine on Thursday published a review article that describes collaborative work by researchers at Oak Ridge National Laboratory and the University of Tennessee and researchers at universities in Poland and Belgium. The authors describe the behavior of super-heavy nuclei -- those chock full of protons and neutrons to the point that they tax the physical forces that hold them together.

"Predicting the stabilities of extremely heavy nuclei has been a long-term goal of nuclear scientists. This research represents the very best we can do at predicting the structure of these species," said Witold Nazarewicz, a researcher in ORNL's Physics Division and UT's Department of Physics and Astronomy.

The paper describes how the protons and neutrons of extremely heavy nuclei arrange into shapes that can be oblong or flat. That shape can help determine the stability or life of the nucleus, which is, in turn, a factor in determining if the atomic species can even exist or be synthetically created.

Because of strong electrostatic repulsion, some of these superheavy nuclei may have extremely short lifetimes.

"A typical lifetime of a nucleus is in the extremely heavy range of a millisecond," said Nazarewicz.

But in some cases, certain isotopes may be much more stable, or long-lived, and this stability may depend on the nuclear shape. Experiments performed at GSI in Germany, RIKEN in Japan, in Dubna, Russia, and elsewhere have bolstered theories that the lives of nuclei become longer as certain configurations of protons and neutrons are achieved. Computationally intense theoretical modeling indicates that a large difference in the shapes of a "parent" nucleus, which decays by emitting an alpha particle, and that of its "daughter" isotope will hinder the rate of decay to that daughter.

"It takes time for a nucleus to decay from a flat, oblate shape to a well-deformed elongated shape. These protons and neutrons are rearranging themselves, and this shape change causes difficulty," said Nazarewicz.

Some experiments indicate that the addition of neutrons to a nucleus can extend the life of an isotope of a superheavy element -- for instance the as-yet unnamed element 112 -- from a fraction of a second to more than 30 seconds. In terms of existence for extremely heavy nuclei, a half-minute is an eternity.

Nuclei in the particularly well-bound isotopes find arrangements that physicists regard as "magic." Such nuclei are reminiscent of noble gases -- for instance, helium, argon and neon -- which because of their closed electron shells are so stable and unreactive that they are known as inert gases.

Nuclei also can have closed shells of protons and neutrons. Lead-208 is the heaviest "doubly magic" nucleus with closed shells of 82 protons and 126 neutrons.

"We do not really know what is the next doubly magic nucleus beyond lead-208" Nazarewicz said.

Theorists like Nazarewicz and his Nature co-authors, the late S. Cwiok of the Warsaw University of Technology, Poland, and P.-H. Heenen of the Free University of Brussells, Belgium, believe that in the extremely heavy regions, the interplay of nuclear shapes and proton and neutron arrangements eventually will approach relatively stable, "near-magic" states.

"These theories are supported by large-scale, state-of-the-art calculations. At the same time, lab experimenters are trying to understand the mechanisms of nuclear collisions. Experiments with beams of radioactive neutron-rich nuclei such as doubly magic tin-132 may teach us how to pump more neutrons into the nuclei of these super-heavy elements," said Nazarewicz, who is scientific director of ORNL's Holifield Radioactive Ion Beam Facility.

Source: Oak Ridge National Laboratory

Explore further: Code speedup strengthens researchers' grasp of neutrons

Related Stories

Code speedup strengthens researchers' grasp of neutrons

August 18, 2015

Neutrons are notoriously slippery subatomic particles. On their own, they break down in a matter of minutes, but within the confines of the atom's nucleus, neutrons are a foundational piece of nearly all known types of matter ...

Using an electron to probe the tiny magnetic core of an atom

August 12, 2015

Precise information about the magnetic properties of nuclei is critical for studies of what's known as the 'weak force.' While people do not feel this force in the same way they feel electricity or gravity, its effects are ...

Recommended for you

Just how good (or bad) is the fossil record of dinosaurs?

August 28, 2015

Everyone is excited by discoveries of new dinosaurs – or indeed any new fossil species. But a key question for palaeontologists is 'just how good is the fossil record?' Do we know fifty per cent of the species of dinosaurs ...

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Fractals patterns in a drummer's music

August 28, 2015

Fractal patterns are profoundly human – at least in music. This is one of the findings of a team headed by researchers from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Harvard University ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.