SRAM technology with 0.8V operation voltage

February 17, 2005

Hitachi, Ltd.and Renesas Technology Corp. announced that they have developed low-voltage embedded SRAM technology for SoC's (system-on-a-chip) beyond the 90-nm process node. Using new circuit techniques, the power lines of SRAM cells were placed in a "floating state" (detached from the power supply) during write operations, and 0.8V operation was confirmed. This development will help overcome the barrier to maintaining low-voltage operation which is becoming increasingly more difficult to achieve due to process scaling, and is expected to become fundamental technology for achieving both high-performance and low-power operation in SoCs embedded in information devices, which are supporting the growth of the ubiquitous society.

In SoC's, which processes multimedia files in information devices such as cellular phones, "high-speed" and "low-power" are essential features. Conventionally, high-speed performance was achieved by transistor scaling and low-power operation by supply-voltage scaling. Beyond the 90-nm process node, however, the effect of performance variations in the transistors can no longer be ignored and achieving higher performance through conventional methods is becoming difficult. This is especially so for SRAM circuits. As the amount of data that a SoC needs to process increases, SRAM capacity must also increase, and thus even a small performance variation between transistors has a large effect on performance, making it difficult to further lower the supply voltage. Thus the supply voltage for the SRAM circuit is expected to create a limit on the degree to which low-power operation can be achieved in SoC's, and the development of new low-voltage technology for SRAM in the 90nm process node and beyond, is a considered critical issue for achieving low-power SoC's.

In response to this challenge, Hitachi and Renesas Technology have developed the low-voltage and low-power technology for embedded SRAM in SoC's beyond 90-nm process node. Features of the technology are as below:

(1) Power-line floating write techniques for low-voltage operation:
The power line of SRAM for retaining data is placed in a floating state (detached from the power supply) during a write operation, creating a condition where it is easier to re-write the data in the memory cell. This enables the write operation to be conducted with low supply voltage, and at the same time lowering the operating voltage of the entire SRAM.

(2) Write replica circuit for low-power write operation:
Conventionally, during the entire time assigned to a write operation, all the write circuits are activated in order to attain good write performance. This new technique monitors the write performance using a replica circuit, and the write-circuit activating time is changed according to the write performance. This enables unnecessary power consumption to be reduced without performance degradation.

Hitachi and Renesas have fabricated prototype chips with 32-kbit SRAM module for cache memory and 512-kbit SRAM module for working memory, and evaluated its performance. Compared to the conventional SRAM modules, the supply voltage is 100-mV lowered and the SRAM modules can operate at 0.8-V supply voltage. The write replica circuit reduces its power consumption by 18%, and achieves the power performance, 0.76 µW/MHz bit.

The circuit technology developed is expected to contribute significantly to overcoming a scaling barrier to achieving low-power and low-voltage operation in embedded SRAM beyond the 90nm process node.

These results were presented at the IEEE International Solid-State Circuits Conference (ISSCC 2005), held in San Francisco, California, U.S.A., from 6th February 2005.

Explore further: Renesas, Matsushita Develop Technique for Stablizing Operation of 45nm On-Chip SRAM

Related Stories

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.