Scientists discover the origin of a mysterious force

February 28, 2005
Scientists discover the origin of a mysterious force

Scientists at the Universitat Autònoma de Barcelona and Imperial College London have discovered the origin of hydration force, a phenomenon that causes some complex chemical and biochemical species (including DNA and other electrostatically charged molecules) to repel at short distances when surrounded by water. Through this research, improvements could be made to the design of chemical products used in the chemical, pharmaceutical and food industry.

Ever since the 1970s, scientists have been trying to establish the cause of a repulsive force occurring between different electrostatically charged molecules, such as DNA and other biomolecules, when they are very close to each other in aqueous media. This force became know as hydration force.

Jordi Faraudo, a researcher for the Department of Physics at the Universitat Autònoma de Barcelona, and Fernando Bresme of the Department of Chemistry at Imperial College London have studied this mysterious force in detail and have discovered where its origins lie.

In the same way that a flag flutters in the direction the wind is blowing, at a microscopic level water molecules are gently attracted towards the direction in which an electric field is pointing. However, when the water is in contact with surfaces that create small electric fields, such as chemical compounds like those found in many detergents, this is no longer the case: the water molecules have a remarkable capacity to organise themselves into complex structures that are strongly orientated in such a way as to cancel out the electric field, and on some occasions, to reverse it. This abnormal behaviour was discovered by the same researchers and published in Physical Review Letters in April 2004.

The scientists have now discovered that this strange property is responsible for the hydration force that acts when water is surrounded by certain types of electrostatically charged molecules, such as DNA and some biological compounds, and when thin films form in detergents. The discovery has been published in today’s edition of Physical Review Letters.

Water is the solvent in which most physical, chemical and biological processes take place. Therefore, it is essential to understand the nature of interactions between molecules dissolved in water in order to understand many of these processes. Two of the most important of these processes are the adherence of substances to cell membranes and the withdrawal of proteins. Both of these are fundamental in biomedical research, since a substantial part of the process of designing new drugs is based on understanding how substances penetrate cell membranes to enter cells. These drugs are often proteins designed to prevent or strengthen the action of other substances. In these cases, accurately identifying the protein folding is essential, since the form these proteins take on when they fold influences how effectively they are able to act.

Fully understanding the properties of this force that occurs when molecules surrounded by water adhere to each other is also useful in the chemical industry, particularly when involving mechanisms in which colloidal suspensions must be stabilised, such as the mechanisms used to produce paints, cosmetics and food products such as yoghurt and mayonnaise.

Source: Universitat Autònoma de Barcelona

Explore further: Iron found in fossils suggests supernova role in mass dying

Related Stories

Iron found in fossils suggests supernova role in mass dying

August 22, 2016

Outer space touches us in so many ways. Meteors from ancient asteroid collisions and dust spalled from comets slam into our atmosphere every day, most of it unseen. Cosmic rays ionize the atoms in our upper air, while the ...

Researchers immobilize underwater bubbles

August 9, 2016

Controlling bubbles is a difficult process and one that many of us experienced in a simplistic form as young children wielding a bubble wand, trying to create bigger bubbles without popping them. A research team in CINaM-CNRS ...

Does ecology reach all the way down to the subatomic scale?

August 16, 2016

Imagine you could stop being human-sized for a while and shrink down to the size of a bacterium, roughly one-millionth of your current stature. At this scale, you would stop being bound by gravity and instead discover that ...

Recommended for you

Reconstructing the sixth century plague from a victim

August 30, 2016

Before the infamous Black Death, the first great plague epidemic was the Justinian plague, which, over the course of two centuries, wiped out up to an estimated 50 million (15 percent) of the world's population throughout ...

Theorists solve a long-standing fundamental problem

August 30, 2016

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds ...

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

LyoDave
not rated yet Oct 14, 2008
Better read about Jacob Israelachvili's latest experiments on the "hydration force". Jacob now says the whole thing is an experimental artefact. Or more precisely, a fundamental misinterpretation of force box apparatus experimental results. Seeing as how Jacob has been at the very center of this debate since the beginning, one has to take this very seriously.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.