Saturn’s radio emissions and bright auroras are linked

February 17, 2005

Just as the static on an AM radio grows louder with the approach of a summer lightning storm, strong radio emissions accompany bright auroral spots -- similar to Earth’s northern lights -- on the planet Saturn, according to a research paper published in the Thursday, Feb. 17 issue of the journal Nature.

The Cassini spacecraft is the first to explore the Saturn system of rings and moons from orbit. Cassini entered orbit on Jun. 30, 2004 and immediately began sending back intriguing images and data. According to William Kurth, research scientist in the University of Iowa College of Liberal Arts and Sciences Department of Physics and Astronomy, the data collected in early 2004, indicated that Saturn’s strong radio emissions grow stronger when the solar wind blows harder.

"We had expected that this might be the case, based on our understanding of auroral radio signals from Earth’s auroras, but this is the first time we’ve been able to compare Saturn’s radio emissions with detailed images of the aurora," Kurth says. "This is important to our on-going Cassini studies because this association allows us to have some idea of what the aurora are doing throughout the mission from our continuous radio observations."

Co-author Don Gurnett, Cassini Radio and Plasma Wave Science (RPWS) instrument principal investigator, says the finding means that radio emissions from Saturn’s aurora are very similar to radio emissions from the Earth’s aurora.

Kurth says that one of Cassini’s objectives is to understand how the magnetic field around Saturn, called its magnetosphere, responds to the influence of the solar wind, a hot gas composed of electrons and ions that originates at the Sun and blows past the planets at speeds around one million miles per hour.

Two related papers published by other researchers in Thursday’s issue of Nature show that, like a flaming log in a campfire, Saturn’s aurora become brighter and more expansive when the solar wind blows harder. However, the distribution of auroras on Saturn differs from those on Earth.

Other discoveries made by UI researchers using the RPWS instrument have included finding that lightning on Saturn is roughly one million times stronger than lightning on Earth; observing that Cassini impacted dust particles as it traversed Saturn’s rings; and learning that Saturn’s radio rotation rate varies.

The radio sounds of Saturn’s rotation -- resembling a heartbeat -- and other sounds of space can be heard by visiting .

Explore further: Disk gaps don't always signal planets

Related Stories

Disk gaps don't always signal planets

November 2, 2015

When astronomers study protoplanetary disks of gas and dust that surround young stars, they sometimes spot a dark gap like the Cassini division in Saturn's rings. It has been suggested that any gap must be caused by an unseen ...

The gas (and ice) giant Neptune

September 14, 2015

Neptune is the eight planet from our Sun, one of the four gas giants, and one of the four outer planets in our Solar System. Since the "demotion" of Pluto by the IAU to the status of a dwarf planet – and/or Plutoid and ...

Discovery of Saturn's auroral heartbeat

August 4, 2010

( -- An international team of scientists led by Dr Jonathan Nichols of the University of Leicester has discovered that Saturn’s aurora, an ethereal ultraviolet glow which illuminates Saturn’s upper atmosphere ...

Saturn's magnetic field inflated by hot plasma explosions

December 15, 2010

( -- A new analysis based on data from NASA's Cassini spacecraft finds a causal link between mysterious, periodic signals from Saturn's magnetic field and explosions of hot ionized gas, known as plasma, around ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.