Devising nano vision for an optical microscope

February 10, 2005
nano vision for an optical microscope

Contrary to conventional wisdom, technology's advance into the vanishingly small realm of molecules and atoms may not be out of sight for the venerable optical microscope, after all. In fact, research at the National Institute of Standards and Technology (NIST) suggests that a hybrid version of the optical microscope might be able to image and measure features smaller than 10 nanometers--a tiny fraction of the wavelength of visible light.

In a preliminary test of the embryonic technique, NIST scientists used violet light with a wavelength of 436 nanometers to image features as small as 40 nanometers, about five times smaller than possible with a conventional optical microscope.

Roughly speaking, such a feat is akin to picking up a solitary dime with a clumsy front-end loader. If successfully developed, the imaging technology could be readily incorporated into chip-making and other commercial-scale processes for making parts and products with nanometer-scale dimensions.

The wavelengths of light in the visible part of the spectrum greatly exceed nanoscale dimensions. Consequently, the resolution of conventional light-based imaging methods is limited to about 200 nanometers--too large to resolve the details of nanotechnology, which, by definition, are no more than half that size.

However, a newly begun, five-year research effort at NIST suggests that a novel combination of illumination, detection and computing technologies can circumvent this limitation. Success would extend the technology's 400-year-long record as an indispensable imaging and measurement tool well into the expanding realm of nanotechnology.

Called phase-sensitive, scatter-field optical imaging, the computer-intensive technique under development at NIST uses a set of dynamically engineered light waves optimized for particular properties (such as angular orientation and polarization). How this structured illumination field--engineered differently to highlight the particular geometry of each type of specimen--scatters after striking the target can reveal the tiniest of details.

"The scattering patterns are extremely sensitive to small changes in the shape and size of the scattering feature," explains Rick Silver, a physicist in NIST's Precision Engineering Division.

Explore further: Twisting neutrons: Orbital angular momentum of neutron waves can be controlled

Related Stories

Physicists show 'molecules' made of light may be possible

September 10, 2015

It's not lightsaber time, not yet. But a team including theoretical physicists from the National Institute of Standards and Technology (NIST) has taken another step toward building objects out of photons, and the findings ...

Recommended for you

A long look back at fishes' extendable jaws

October 8, 2015

When it comes to catching elusive prey, many fishes rely on a special trick: protruding jaws that quickly extend their reach to snap up that next meal. Now, researchers reporting in the Cell Press journal Current Biology ...

New protein cleanup factors found to control bacterial growth

October 8, 2015

Biochemists have long known that crucial cell processes depend on a highly regulated cleanup system known as proteolysis, where specialized proteins called proteases degrade damaged or no-longer-needed proteins. These proteases ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.