Devising nano vision for an optical microscope

February 10, 2005
nano vision for an optical microscope

Contrary to conventional wisdom, technology's advance into the vanishingly small realm of molecules and atoms may not be out of sight for the venerable optical microscope, after all. In fact, research at the National Institute of Standards and Technology (NIST) suggests that a hybrid version of the optical microscope might be able to image and measure features smaller than 10 nanometers--a tiny fraction of the wavelength of visible light.

In a preliminary test of the embryonic technique, NIST scientists used violet light with a wavelength of 436 nanometers to image features as small as 40 nanometers, about five times smaller than possible with a conventional optical microscope.

Roughly speaking, such a feat is akin to picking up a solitary dime with a clumsy front-end loader. If successfully developed, the imaging technology could be readily incorporated into chip-making and other commercial-scale processes for making parts and products with nanometer-scale dimensions.

The wavelengths of light in the visible part of the spectrum greatly exceed nanoscale dimensions. Consequently, the resolution of conventional light-based imaging methods is limited to about 200 nanometers--too large to resolve the details of nanotechnology, which, by definition, are no more than half that size.

However, a newly begun, five-year research effort at NIST suggests that a novel combination of illumination, detection and computing technologies can circumvent this limitation. Success would extend the technology's 400-year-long record as an indispensable imaging and measurement tool well into the expanding realm of nanotechnology.

Called phase-sensitive, scatter-field optical imaging, the computer-intensive technique under development at NIST uses a set of dynamically engineered light waves optimized for particular properties (such as angular orientation and polarization). How this structured illumination field--engineered differently to highlight the particular geometry of each type of specimen--scatters after striking the target can reveal the tiniest of details.

"The scattering patterns are extremely sensitive to small changes in the shape and size of the scattering feature," explains Rick Silver, a physicist in NIST's Precision Engineering Division.

Explore further: Move over, lasers: Scientists can now create holograms from neutrons, too

Related Stories

NIST's compact gyroscope may turn heads

August 23, 2016

Shrink rays may exist only in science fiction, but similar effects are at work in the real world at the National Institute of Standards and Technology (NIST).

Harmful algal blooms in their true colors

August 29, 2016

Explosive growth of cyanobacteria, also called blue-green algae, is nothing new. In fact, such cyanobacteria probably produced the original oxygen in Earth's atmosphere billions of years ago.

Hyperspectral imaging: Shedding new light on wound healing

April 9, 2012

( -- Clinicians who treat severe wounds may soon have powerful new diagnostic tools in the form of hyperspectral imaging (HSI) devices, calibrated to new NIST standard reference spectra, which will provide unprecedented ...

NIST effort could improve high-tech medical scanners

June 13, 2012

( -- A powerful color-based imaging technique is making the jump from remote sensing to the operating room—and a team of scientists at the National Institute of Standards and Technology (NIST) have taken steps ...

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Experts uncover hidden layers of Jesus' tomb site

October 27, 2016

In the innermost chamber of the site said to be the tomb of Jesus, a restoration team has peeled away a marble layer for the first time in centuries in an effort to reach what it believes is the original rock surface where ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.