New laser research could improve oil exploration success

February 7, 2005

CSIRO Petroleum and German-based research centre Laser Zentrum Hannover eV (LZH) are collaborating in a project that could save millions of dollars in oil exploration and introduce new Australian geochemical and petroleum analysis techniques to Europe.
Researchers from the two organisations are six months into a three year project working to enhance the capabilities of the on-line laser micropyrolysis gas chromatography-mass spectrometry (LaPy-GC/MS) technique for quality control and geochemical analysis.

Laser micropyrolysis is a widely accepted and effective instrument for many applications such as geochemical analysis for the petroleum industry, tissue analysis in laser medicine, quality control in petrochemistry and laser-assisted production.

CSIRO Petroleum organic geochemist Dr Simon George, based in Sydney, said the project sought to combine the advantages of the similar techniques currently used in both laboratories for different purposes.

At LZH, laser micropyrolysis has been demonstrated as a tool for quality control in the automotive industry, polymer processing and woodworking industries.

CSIRO has mainly used its version of the technique for petroleum industry and geochemical applications, except for some forensic work on analysing paint chips, hairs and photocopier toner. The technique has considerable promise as a forensic tool because such samples are typically very small and only limited data can be acquired from them.

"From the CSIRO's perspective, enhancing this technique will enable more accurate analysis of small amounts of organic matter in source rocks and reservoir rocks, such as organic particles, microfossils, solid bitumens and oil-bearing fluid inclusions," Dr George said.

"This will mean that the oil-source potential of different organic materials will be better understood, enabling better prediction of when source rocks generated.

"If single oil inclusion can be analysed, this will also mean that much more detailed oil-charge event histories will be able to be constructed, enabling better prediction of where to drill new oil wells.

"This collaboration means the CSIRO will benefit from much more rapid development and refinement of the method than would be otherwise possible. For both partner countries, the investigation will give impetus to new scientific projects and industrial cooperation."

LZH scientist Dr Stephan Barcikowski said that there were very few operational laser micropyrolysis systems in the world and efforts to refine the technique have been dispersed and isolated.

"This collaboration, between two of the most active labs in the World on laser micropyrolysis, will enable pooling of resources and ideas, mutual testing of concepts and much quicker advancement and development of the technique," Dr Barcikowski said. "One outcome of this project will be to give the LZH new access to the petroleum, geochemistry and petrochemistry market in Germany and Europe.

"The whole potential of this technique for other applications may also be achieved if we can combine the advantages of our systems and further validate this analytical method.

A joint patent of the newly developed instrumentation and method will be considered.

Source: CSIRO Australia

Explore further: Aluminum clusters shut down molecular fuel factory

Related Stories

Aluminum clusters shut down molecular fuel factory

July 6, 2015

Despite decades of industrial use, the exact chemical transformations occurring within zeolites, a common material used in the conversion of oil to gasoline, remain poorly understood. Now scientists have found a way to locate—with ...

Unlocking the biofuel energy stored in plant cell walls

June 10, 2015

By virtue of their chloroplasts, plants are superb harvesters of solar energy. They use it to build leaves, flowers, fruits, stems, and roots. We harvest a small percentage of that energy in the form of food and a smaller ...

Naked jets of water make a better pollutant detector

October 3, 2013

When you shine ultraviolet light (UV) through water polluted with certain organic chemicals and bacteria, the contaminants measurably absorb the UV light and then re-emit it as visible light. Many of today's more advanced ...

Hot electrons do the impossible in catalytic chemistry

December 17, 2012

(Phys.org)—From petroleum refining to food processing, the vast majority of commercial chemical applications involve catalysts to control the rate of chemical reactions. Anything that can increase the efficiency of catalysts ...

Recommended for you

Tracking a mysterious group of asteroid outcasts

August 4, 2015

High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne (pronounced you-FROH-seh-nee) ...

Fish that have their own fish finders

August 4, 2015

The more than 200 species in the family Mormyridae communicate with one another in a way completely alien to our species: by means of electric discharges generated by an organ in their tails.

Volcanic bacteria take minimalist approach to survival

August 4, 2015

New research by scientists at the University of Otago and GNS Science is helping to solve the puzzle of how bacteria are able to live in nutrient-starved environments. It is well-established that the majority of bacteria ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.