The Promise of Terahertz

January 16, 2005
Gwyn Williams holding an accelerator component inside JLab's FEL

Terahertz (THz) light may provide stunning breakthroughs in areas as diverse as national security, medical imaging and communications technology. But it's largely been ignored until recently, because there wasn't a terahertz light source bright enough for these applications. Now the Free-Electron Laser (FEL) at DOE's Jefferson Lab (JLab) is producing 100 Watts of THz light for scientific studies -- nearly 100,000 times brighter than THz light produced anywhere else.

Image: Gwyn Williams holding an accelerator component inside JLab's FEL.

Terahertz light is a little-studied realm of the electromagnetic spectrum between microwave and infrared light. Also known as t-rays, terahertz light has a wavelength between 3 millimeters and .003 millimeters; and though just about everything in the universe emits them, humans can neither see nor feel these ubiquitous t-rays.

FEL Basic Research Program Manager Gwyn Williams says scientists are excited about t-rays because they can penetrate many forms of matter and are non-ionizing (don't harm living tissue at modest powers). That means they may provide medical images that are better and safer than x-rays, such as a scanner that can instantly diagnose skin cancer. They could also be used for non-invasive airport screening, spotting weapons concealed in clothing.

Built with JLab's expertise in SRF technology, the FEL is the world's most powerful tunable laser. As electrons used to create the laser beam are steered from the linear accelerator around a curve to a wiggler where the laser beam is produced, the electrons give off t-rays. These t-rays can then be routed into a lab for research. “Every time there's an electron beam, we get terahertz,” Williams says. The project is funded by the U.S. Army Night Vision and Electronic Sensors Directorate.

Terahertz research can also extend JLab's mission of studying the structure of matter. For instance, Williams says t-rays can cause individual proteins to vibrate at specific frequencies, revealing structure. “It's also fundamental physics. But instead of looking at the atomic nucleus, we're looking at how materials work at the atomic level.”

Source: DOE Pulse

Related Stories

Recommended for you

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.