Sensor System to Gauge Effects of Cosmic Rays on Lunar Explorers

Jan 20, 2005

Boston University Professor Harlan Spence recently joined five other space scientists at Goddard Space Center in Greenbelt, Maryland to discuss their participation in NASA’s Lunar Reconnaissance Orbiter (LRO) program.
Spence learned in late December that his proposal for CRaTER, an instrument that will measure and characterize the potential biological effects of cosmic radiation on humans, was one of six selected by the space agency for the LRO mission scheduled for fall 2008.

A professor in Boston University’s Center for Space Physics and a professor in and chairman of the university’s Department of Astronomy, Spence is expected to receive a contract for approximately $9.5 million for CRaTER. He and the other principal investigators will each head institution-based research teams that will build instruments to gather data on the lunar environment, a vital first step in NASA’s preparation for what President Bush has announced will be a series of human and robotic missions to the moon.

CRaTER, which stands for Cosmic Ray Telescope for the Effects of Radiation, will measure the high-energy charged particles (ions and electrons, not “rays” at all) that travel throughout the cosmos at nearly light speed. Consisting of a novel cosmic ray sensor system coupled with proven analog and digital electronics, CRaTER will relay its data back to Earth through the LRO spacecraft’s communication system.

The sensor system will be the scientific heart of the instrument. Designed as a stack of detectors housed in a structure of aluminum and special material known as tissue-equivalent plastic, the sensor system will allow CRaTER scientists to measure and characterize the potential biological effects of radiation that occur in deep space. The aim: gather the data needed to develop equipment and materials that will ensure human safety in the lunar environment.

“In 1971, I stood with my family in the throngs that watched Apollo 15 thunder into space from Cape Canaveral,” Spence recalls. “It was a defining moment for me, hooking me on a career in astronomy and space science. With CRaTER, I get to relive that excitement as a space scientist — and get to experience my own voyage, of sorts, to the moon!”

Scientists on Spence’s team include Larry Kepko, senior research associate in BU’s Center for Space Physics; J. Bernard Blake, director of the Space Sciences Department at the California-based research group, The Aerospace Corporation; Joseph Mazur, research scientist and laboratory manager at Aerospace; Justin Kasper, a research scientist in MIT’s Center for Space Research; and Lawrence Townsend, a professor of nuclear engineering at The University of Tennessee in Knoxville. Team collaborators include Michael Golightly of the Air Force Research Laboratory in Bedford, Massachusetts and Terrence Onsager of the National Oceanic and Atmospheric Administration’s Space Environment Center in Boulder, Colorado.

The LRO mission is part of NASA’s Robotic Lunar Exploration Program. In 2008, the orbiter will carry the instruments built by the teams into space where they will begin gathering the information that will inform the planning and execution of future lunar missions. The five other NASA-selected teams are from Goddard Space Flight Center in Greenbelt, Maryland; Northwestern University in Evanston, Illinois; Institute for Space Research and Federal Space Agency in Moscow; University of California in Los Angeles; and Southwest Research Institute in Boulder, Colorado.

Faculty research in BU’s Department of Astronomy is coordinated through its Institute for Astrophysical Research and its Center for Space Physics. Research areas include observational and theoretical studies in galactic and extragalactic astrophysics, magnetospheric and ionospheric physics, planetary and cometary atmospheres, space weather, space plasma physics, star formation and galactic structure, star and star clusters, active galaxies and quasars, high-energy and particle astrophysics, galaxy formation, and cosmology.

Source: Boston University

Explore further: Global roadmap for better understanding space weather released

Related Stories

NASA image: Tethys 'eyes' Saturn

Jun 15, 2015

The two large craters on Tethys, near the line where day fades to night, almost resemble two giant eyes observing Saturn.

Dazzling gallery from India's MOM Mars Orbiter Camera

Jun 08, 2015

India's first ever robotic explorer to the Red Planet, the Mars Orbiter Mission, more affectionately known as MOM, has captured an absolutely dazzling array of images of the fourth rock from the Sun.

Will we ever colonize Mars?

Jun 01, 2015

Mars. It's a pretty unforgiving place. On this dry, dessicated world, the average surface temperature is -55 °C (-67 °F). And at the poles, temperatures can reach as low as -153 °C (243 °F). Much of ...

Driest place on Earth hosts life

May 19, 2015

Researchers have pinpointed the driest location on Earth in the Atacama Desert, a region in Chile already recognised as the most arid in the world. They have also found evidence of life at the site, a discovery ...

Mystery methane on Mars: The saga continues

May 15, 2015

Is the Red Planet giving off methane? The question has taunted scientists for nearly 50 years, ever since the Mariner 7 spacecraft detected a whiff of the gas near Mars' south pole. Researchers retracted ...

Recommended for you

Uranus' moon Titania

5 hours ago

Like all of the Solar Systems' gas giants, Uranus has an extensive system of moons. In fact, astronomers can now account for 27 moons in orbit around Uranus. Of these, none are greater in size, mass, or surface ...

Image: Europa's blood-red scars

5 hours ago

Jupiter's moon Europa is a bizarre place. There is something undeniably biological about this image, sent back by NASA's Galileo spacecraft – the moon is scarred by deep red gashes, resembling the vibrant ...

A giant Pac-Man to gobble up space debris

6 hours ago

The Clean Space One Project has passed a milestone. The space cleanup satellite will deploy a conical net to capture the small SwissCube satellite before destroying it in the atmosphere. It's one of the solutions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.