Nano paint could boost antiterrorism, rescue efforts

Jan 28, 2005

New technology may be used to detect cancer in the first cells to become malignant

Night vision technology could become extremely precise thanks to an inexpensive water-based material capable of boosting particles of light in the infrared spectrum, say University of Toronto researchers. The material has the potential to enhance infrared images tenfold by coating lenses with a film a 10th of a millimetre thick and powering the material with a laser.
In a study published the January issue of the journal Optics Letters, University of Toronto professors Ted Sargent and Eugenia Kumacheva and colleagues produced optical gain - boosting the power in a beam of light the way a stereo boosts electrical signals - using nanometre-sized particles originally suspended in water. The material can be coated onto computer chips, sprayed onto windows and painted onto flexible fabrics to reveal a new infrared world -- featuring colours with wavelengths longer than the human eye can see.

"The infrared is the wavelength used to send billions of bits of information over thousands of kilometres in fibre-optic cables," says Sargent, a professor at U of T's Edward S. Rogers Sr. Department of Electrical and Computer Engineering. "Not only does it enable night vision in antiterrorism and search and rescue but it may be used to detect cancer in the first cells to become malignant because living tissue is transparent in certain colours in the infrared."

Chemistry professor Eugenia Kumacheva, the Canada Research Chair in Advanced Polymer Materials, and her team created quantum dots - nanometre-sized particles of the semiconductor lead sulfide - which produce light at carefully chosen infrared wavelengths. Kumacheva and her team invented a simple, one-stage, water-based synthesis that produced ready-to-use quantum dots.

The engineers then made thin, smooth films out of Kumacheva's materials by depositing a drop of water containing the nanoparticles onto a piece of glass and simply letting it dry. "When we used intense lasers to excite the nanomaterial, we found that the film could double the power of light in a propagating beam every 30 microns - about a thousandth of an inch," says Sargent, the Nortel Networks - Canada Research Chair in Emerging Technologies. Amplifying light is necessary for making a laser, for boosting signals on an optical communications chip and for enhancing infrared images in biological and antiterrorism applications.

The findings complement a breakthrough also made by Sargent and colleagues that was reported in Nature Materials Jan. 9. The team reported a paintable material that for the first time could sense light and harness the sun's energy at tailored wavelengths in the infrared. "The field of spray-on infrared nanotechnology is leaping ahead week-by-week," said Sargent. "The Jan. 9 discovery senses and harvests infrared light; today's boosts it. Applying these paintable infrared materials is splashing open a new palette: colouring our world using the shades we cannot see, but which power the Internet, reveal warm objects against a cold background and allow non-invasive diagnosis before disease has the chance to progress."

Other members of the U of T research team are Vlad Sukhovatkin, Sergei Musikhin, Sam Cauchi and Luda Bakueva of electrical and computer engineering and Ivan Gorelikov of chemistry. The study was funded by the Science and Engineering Research Canada (NSERC) under its NanoInnovation Platform and also by the Canada Research Chairs Program, the Canada Foundation for Innovation and the Ontario Innovation Trust.

Source: University of Totonto (by Karen Kelly)

Explore further: A stretchy mesh heater for sore muscles

Related Stories

The discovery of the molecule Si-C-Si in space

Jun 29, 2015

The space between stars is not empty—it contains a vast reservoir of diffuse material with about 5-10% of the total mass of our Milky Way galaxy. Most of the material is gas, but about 1% of this mass (quite ...

Can planets be rejuvenated around dead stars?

Jun 26, 2015

For a planet, this would be like a day at the spa. After years of growing old, a massive planet could, in theory, brighten up with a radiant, youthful glow. Rejuvenated planets, as they are nicknamed, are ...

The physical properties of dense molecular clouds

Jun 25, 2015

Small, dense interstellar clouds of gas and dust, containing hundreds to thousands of solar-masses of material, are suspected of being the precursors to stars and stellar clusters. These so-called cores, ...

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.