Magnetic mystery solved

Jan 28, 2005
Magnetar

Magnetars - stars with magnetic fields a thousand million million times stronger than Earth's - are formed when some of the biggest stars in the cosmos explode, says a team led by Australian ex-pat Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics.
The astronomers base their conclusions on a study made with CSIRO's Australia Telescope Compact Array and Parkes radio telescope in eastern Australia.
"The source of these very powerful magnetic objects has been a mystery since the first one was discovered in 1998, says Gaensler. "Now we think we've nailed it."

Image: Artist's conceptions of a magnetar - a neutron star with a super-strong magnetic field, represented by the lines in these illustrations.

Magnetars have magnetic fields so strong that, if one were located halfway to the Moon, it could wipe the data from every credit card on Earth. Astronomers think magnetars are a kind of neutron star - a city-sized ball of neutrons created from a star's core when then the star explodes as a supernova at the end of its life.

Only about 10 magnetars are known. But while magnetars are very rare, another form of neutron star, called a pulsar, is much more common. Astronomers have found more than 1500 of them. Magnetars spit out bursts of high-energy X-rays or gamma rays. Normal pulsars emit beams of low-energy radio waves.

"Both radio pulsars and magnetars tend to be found in the same regions of the Milky Way, in areas where stars have recently exploded as supernovae," explains Gaensler.

"The question has been: if they are located in similar places and are born in similar ways, then why are they so different?"

Previous research has hinted that the mass of the original, progenitor star might be the key. Recent papers by Eikenberry et al (2004) and Figer et al (2005) have suggested this connection, based on finding magnetars in clusters of massive stars.

"Astronomers used to think that really massive stars formed black holes when they died," says Dr Simon Johnston of CSIRO's Australia Telescope National Facility.

"But in the past few years we've realised that some of these stars could form pulsars, because they go on a rapid weight-loss program before they explode as supernovae."

These stars lose a lot of mass by blowing it off in winds that are like the Sun's solar wind, but much stronger. This loss would allow a very massive star to form a pulsar when it died.

To test this idea, Gaensler and his team investigated a magnetar called 1E 1048.1-5937, located approximately 9,000 light-years away in the constellation Carina. For clues about the original star, they studied the hydrogen gas lying around the magnetar, using data gathered by CSIRO's Australia Telescope Compact Array radio telescope and its 64-m Parkes radio telescope. A map of the hydrogen gas shows a striking hole in the gas around the magnetar.

"The evidence points to this hole being a bubble carved out by the wind that flowed from the original star," says Naomi McClure-Griffiths of CSIRO's Australia Telescope National Facility, one of the researchers who made the map.

The characteristics of the hole indicate that the progenitor star must have been about 30 to 40 times the mass of the Sun. Another clue to the difference between magnetars and pulsars may lie in how fast neutron stars are spinning when they form.

Gaensler and his team suggest that heavy stars will form neutron stars spinning at up to 500-1000 times per second. Such rapid rotation should power a dynamo and generate super-strong magnetic fields. 'Normal' neutron stars are born spinning at only 50-100 times per second, preventing the dynamo from working and leaving them with a magnetic field 1000 times weaker, says Gaensler.

"A magnetar goes through a cosmic extreme makeover and ends up very different from its less exotic radio pulsar cousins," he says.

If magnetars are indeed born from massive stars, then one can predict what their birth rate should be, compared to that of radio pulsars.

"We estimate that the magnetar birth rate will be only about a tenth of that of normal pulsars," says Gaensler. "With the ten or so such sources we now know of, we may have already discovered almost all the magnetars that are out there to be found."

PUBLICATION
B. M. Gaensler, N. M. McClure-Griffiths, M. S. Oey, M. Haverkorn, J. M. Dickey & A. J. Green, "A Stellar Wind Bubble Coincident with the Anomalous X-ray Pulsar 1E 1048.1-5937: Are Magnetars Formed From Massive Progenitors?" This paper has been accepted for publication in The Astrophysical Journal Letters.

Source: CSIRO

Explore further: NASA's reliance on outsourcing launches causes a dilemma for the space agency

Related Stories

Magnetar near supermassive black hole delivers surprises

May 14, 2015

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA's Chandra ...

Magnetar formation mystery solved?

May 14, 2014

Magnetars are the super-dense remnants of supernova explosions. They are the strongest magnets known in the Universe—millions of times more powerful than the strongest magnets on Earth. A team of astronomers ...

A hidden population of exotic neutron stars

May 23, 2013

(Phys.org) —Magnetars – the dense remains of dead stars that erupt sporadically with bursts of high-energy radiation - are some of the most extreme objects known in the Universe. A major campaign using ...

Recommended for you

Hubble view: Wolf-Rayet stars, intense and short-lived

Jul 03, 2015

This NASA/European Space Agency (ESA) Hubble Space Telescope picture shows a galaxy named SBS 1415+437 (also called SDSS CGB 12067.1), located about 45 million light-years from Earth. SBS 1415+437 is a Wolf-Rayet ...

Crash test assesses plane emergency locator transmitters

Jul 03, 2015

The Cessna 172 airplane dangled 82 feet in the air – looking almost like it was coming in for a landing, except for the cables attaching it to a huge gantry at NASA's Langley Research Center in Hampton, ...

NASA image: Curiosity's stars and stripes

Jul 03, 2015

This view of the American flag medallion on NASA's Mars rover Curiosity was taken by the rover's Mars Hand Lens Imager (MAHLI) during the 44th Martian day, or sol, of Curiosity's work on Mars (Sept. 19, 2012). ...

NASA image: Stellar sparklers that last

Jul 03, 2015

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.