Deep Impact Mission On Target

Jan 07, 2005
Artist Pat Rawlings gives us a look at the moment of impact and the forming of the crater

The spacecraft for NASA's Deep Impact mission are now perched atop the Delta II rocket that will launch them on their 6-month journey to encounter a speeding comet. Preparations for the launch, scheduled for January 12, are nearly complete.
Led by University of Maryland astronomer Michael A'Hern, the Deep Impact project will be the first mission to smash a hole in a comet and reveal the secrets of its interior. Comets are balls of ice, gas and dust that orbit the sun. Scientists believe that the permanently frozen cores of comets contain primitive debris from the solar system's formation some 4.5 billion years ago.

"The information we gain from Deep Impact should significantly improve our understanding of how our solar system formed, says A'Hearn. It also will increase our knowledge of the density and composition of comets, information that could be vital should a comet ever threaten Earth."

Encounter

Deep Impact consists of two spacecraft, a flyby spacecraft that is about the size of a sub-compact car and a coffee-table-sized "impactor." At the beginning of July, after a voyage of some 268 million miles, the joined spacecraft will reach their target, Comet Tempel 1. The spacecraft will approach the comet and collect images of it. Then, 24 hours before the July 4th impact, the flyby spacecraft will launch the copper impactor into the path of the onrushing comet.

Like a copper penny pitched into the grill of a speeding tractor-trailer truck, the 820-pound impactor will hit the comet at a collision speed of some 23,000 miles per hour. With a kinetic energy equivalent to almost 5 tons of TNT, the projectile will smash a crater into the comet. A'Hearn and his fellow scientists expect the crater to range in size from that of a house to a football stadium, and from two to fourteen stories deep. They expect to see ice and dust ejected from the crater revealing pristine material beneath. The impact will not affect the orbit of Tempel 1, which poses no threat to earth.

Deep Impact's flyby spacecraft will collect pictures and data of the event and send them back to Earth. There will also be many other "eyes" watching the impact. NASA's Chandra, Hubble and Spitzer space telescopes will be observing from near-Earth space. Professional and amateur astronomers on Earth also will observe the material flying from the comet's newly formed crater.

The data from all these sources will be analyzed and combined with that from other missions to provide a better understanding of both the solar system's formation and of the risk of comets some day again colliding with Earth as has happened in the distant past.

Recent Comet Missions

The Deep Impact mission is the eighth mission in NASA's Discovery Program and the third targeted at a comet. The Stardust mission, launched in February 1999, flew through the coma, or cloud, surrounding the nucleus of Comet Wild 2 in January 2004. It collected samples of cometary and interstellar dust, which will be returned to Earth for study in January, 2006. The Comet Nucleus Tour, or CONTOUR, mission launched in July 2002. Unfortunately, six weeks later, on Aug. 15, contact with the spacecraft was lost.

A European Space Agency mission, Rosetta, was launched in March of 2004 on a trip to orbit comet 67P/Churyumov-Gerasimenko. In 2014, it is scheduled to deliver a scientific instrument package to the comet's surface via a lander.

To date, even basic properties such as mass and density have never been measured for any cometary nucleus. Deep Impact will provide the first data probing below the surface of a cometary nucleus and should allow determination of the density of the surface layers. However, determining the mass and overall density of a comet will have to wait until Rosetta mission arrives at its destination.

Source: University of Maryland

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

The solar system and beyond is awash in water

Apr 08, 2015

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links ...

World's largest asteroid impact site could be in Australia

Apr 07, 2015

Not long ago, asteroid impacts weren't considered as a significant factor in the evolution of Earth. Following the Late Heavy Bombardment, which pummelled the inner solar system around 3.8 billion to 3.9 billion ye ...

ESA's planetary defence test set for 2020

Apr 01, 2015

If an asteroid were spotted headed towards Earth, what could humanity do about it? ESA's latest mission is part of a larger international effort to find out.

NASA asteroid hunter spacecraft data available to public

Mar 27, 2015

Millions of images of celestial objects, including asteroids, observed by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft now are available online to the public. The data ...

Recommended for you

How bad can solar storms get?

May 22, 2015

Our sun regularly pelts the Earth with all kinds of radiation and charged particles. How bad can these solar storms get?

Mars rover's ChemCam instrument gets sharper vision

May 22, 2015

NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.