Columbia Team Shows How Stratospheric Conditions Affect Weather

January 26, 2005
A snapshot of surface temperature in the Northern Hemisphere

Columbia researchers in the Department of Applied Physics and Applied Mathematics in the Fu Foundation School of Engineering and Applied Science (SEAS) are looking toward the upper reaches of the sky to forecast the powerful forces of nature.
The scientists have used a climate model to demonstrate how weather systems and storms may be influenced by disturbances in the stratosphere -- the upper layer of atmosphere 10 to 30 miles above Earth's surface.

Image: This map shows a snapshot of surface temperature in the Northern Hemisphere, with weather systems moving poleward. Columbia researchers have demonstrated that this process is influenced by the presence of a stratospheric jet.

The researchers -- Matthew Wittman, Lorenzo Polvani, Richard Scott and Andrew Charlton -- are part of the Integrative Graduate Education and Research Training (IGERT) joint program in applied mathematics and Earth and environmental sciences, a collaboration of SEAS and the Earth Institute.

Findings from the research were recently published in the American Geophysical Union's journal, Geophysical Research Letters.

"Our research shows that changes to the strength of winds in the stratosphere cause changes to tropospheric weather systems," said lead author Matthew Wittman.

Understanding how the stratosphere affects the troposphere, the lowermost layer of the atmosphere where weather occurs, will help improve seasonal weather forecasts and predictions about the effect of ozone depletion and global warming on our climate. The research is part of the team's ongoing efforts to understand the interaction of the stratosphere and troposphere and improve representation of this interaction in climate models.

"The stratosphere has a longer 'memory' than the troposphere," adds co-author Andrew Charlton. "If you want to make forecasts on a time scale longer than several days, it is useful to understand the mechanisms linking places with longer memories, such as the stratosphere and the oceans to the troposphere."

Each winter, a westerly jet, called the Polar Night Jet, forms in the stratosphere. Winds in this jet circulate around the pole at speeds of up to 100 miles per hour. The strength of the jet changes as part of normal atmospheric variability and possibly also in response to climate change. The authors demonstrate that the presence of stronger westerly jets in the stratosphere causes tropospheric weather systems to track further toward the pole.

Averaging the changes to the paths of weather systems, the team showed, produces a pattern of changes similar in structure to Arctic Oscillation, the dominant pattern of climate variability in the Northern Hemisphere that describes how temperatures across the whole hemisphere vary together.

Source: Columbia University (by Jennifer Freeman)

Explore further: Unprecedented atmospheric behavior disrupts one of Earth's most regular climate cycles

Related Stories

What impact would sun dimming have on Earth's weather?

January 24, 2011

Solar radiation management projects, also known as sun dimming, seek to reduce the amount of sunlight hitting the Earth to counteract the effects of climate change. Global dimming can occur as a side-effect of fossil fuels ...

Recommended for you

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.