Asleep at the wheel

January 2, 2005
Seen from outside, the vehicle appears to be stationary

Driver fatigue is a common cause of road accidents. A new system warns drowsy drivers before it’s too late. At the Vehicle Interaction Lab, researchers are studying in a virtual environment how best to design the electronic monitoring system by focusing on the human element.

It’s 4:00 a.m. and the over-tired driver has already been on the highway for hours. Every so often, his eyelids droop. But before he totally falls asleep, a warning tone catches his attention. Simultaneously the seat belt vibrates, a warning triangle begins to blink in the rear-view mirror and a computer voice announces: "Drowsiness warning! Please stop at the next possibility for your own safety and take a rest!" Suddenly the lights come on and the projector stops.

This scene is being played out in the Vehicle Interaction Lab where researchers from the Fraunhofer Institute for Industrial Engineering IAO and the University of Stuttgart are testing a new hypo-vigilance warning system being developed as part of the EU project AWAKE. It aims to create a driver assistance system through collaboration with automobile manufacturers.

The system is built around various sensors that deliver data to a central processor regarding the condition of the driver, his or her driving behavior and the surrounding car environment. An alarm is activated when the system recognizes situations such as lane drifting, drooping eyelids or if the driver is failing to maintain a safe distance to the vehicle in front.

But how do drivers react to the warnings? Will they comprehend them at all? The researchers have examined these and other questions by monitoring volunteers in an immersive driving simulator. The driver is placed behind the wheel of a real automobile. From behind the vehicle, virtual road scenes are projected onto several screens, giving the test participant the feeling of driving in actual road conditions. Clear, sunny skies can quickly be replaced by thick fog or other adverse weather conditions. Electromechanical elements installed in the car’s suspension help to simulate the effects of leaning into curves and driving over bumps in the road. Finally, vibrating seats and chassis create a life-like sensation of driving.

How best to design the new assistance systems to make them easy to use and operate for drivers? "These are key points that must be addressed at the earliest possible stage of development," emphasizes Dr. Manfred Dangelmaier, head of the IAO Virtual Environments Competence Center. "Right from the start, we develop the man-machine interfaces in parallel with the other system components. Neglecting this area can bring about costly design mistakes." Only by tailoring the new electronic systems to the needs of the user can help drivers avoid mishaps.

Explore further: Reducing traffic congestion, carbon emissions and accidents while increasing travel speed

Related Stories

Smart helmets save lives, improve rides

November 6, 2015

As technological advancements enable people to run faster, ride farther and hit harder, experts are using sensors to collect data that could reduce head trauma incidents for football, hockey, cycling and other sports.

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.