Tiny Holes Offer Giant Glimpse into Future

December 24, 2004

Miniscule holes in a single molecule detector being developed at the University of Arkansas may hold the key to enormous advancements in the medical and biological sciences.
Jiali Li, an assistant professor of physics, recently received a $500,000 grant from the National Institutes of Health to further her research into nanopores. Li, the first UA physicist to receive NIH funding, is fine-tuning a microscope-like device she and her former colleagues invented known as the single-molecule nanopore detector.

Nanopores are essentially holes as tiny as 30 atoms across that exist within all living systems. They act as sensitive membrane channels through which cells sustain life by breathing molecules in and out.

"Not many people study solid-state nanopores," explained Li, who began the project as part of postdoctoral research at Harvard University. "My lab at UA, Dr. [Jene] Golovchenko and Dr. [ Daniel ]Branton's lab at Harvard, and maybe one more lab in Europe [which is pursuing a different aspect of nanopores research].

"Before, we didn't have the tools to look at a single molecule in motion; scientists had to look at thousands of millions of them together to get important information. This is a new tool through which we can look at them one at a time."

With the nanopore "microscope," Li and her research group can look not only at a single molecule, but can measure the interaction between molecules. Down the road, Li and colleagues hope to be able to identify single molecules that are responsible for illnesses. Doctors, for example, could have inexpensive devices in their offices that could read genetic blueprints quickly and easily. Medications and lifestyle changes could then be prescribed to suit each individual, depending upon their individual DNA makeup.

"If this project is successful, it will have a very big impact in the medical sciences and the biological sciences, because we can study a lot of things we could not study before and can't even study now," Li said.

Source: University of Arkansas

Explore further: ORNL integrated energy demo connects 3-D printed building, vehicle

Related Stories

Student tackles labeling RNA without genetic modification

September 21, 2015

Overcoming limitations of super-resolution microscopy to optimize imaging of RNA in living cells is a key motivation for physics graduate student Takuma Inoue, who works in the lab of MIT assistant professor of physics Ibrahim ...

Flowing electrons help ocean microbes gulp methane

September 18, 2015

Good communication is crucial to any relationship, especially when partners are separated by distance. This also holds true for microbes in the deep sea that need to work together to consume large amounts of methane released ...

Recommended for you

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.