Superconductors for electrical, defense, space, medical applications

December 15, 2004

A Wright State engineering professor Sharmila Mukhopadhyay recently received a $950,000 grant for superconductor research with applications that interest the electric power generation industry, the military, space technologists and the medical community.
Superconductors can transmit electric current with zero resistance,” she explained, “and our research is centered on finding ways to make these materials more efficient and economical.” She said copper wire is the main conductor now in use, but transmission lines can carry significantly more power if copper can be replaced by superconducting cables. The superconducting material of choice is an oxide of yttrium, barium and copper that will be coated on metal coils.

Sharmila Mukhopadhyay, Ph.D., a professor of materials science and engineering with the Wright State College of Engineering and Computer Science, received funding from the U.S. Department of Energy for the 18-month project.

Mukhopadhyay, who has received $2.3 million for materials research at Wright State during the past seven years, said the energy department and power generation companies have a renewed interest in superconductor research. “We are studying the superconducting materials at their basic, atomic level to identify ways that can increase the efficiency of transmission lines. Superconductors can also be used in high speed magnetic trains and flywheels. Flywheels, or high speed rotating devices, can help the power generation companies store off-peak power, which can later be converted to electricity during peak demand hours. All this technology can help reduce the chances of power blackouts like the major one that hit the Midwest and East Coast last year.”

She said superconductor research in recent years is becoming more popular. “The earlier superconductors used liquid helium as the cooling medium, but the recent ones can use liquid nitrogen, which is much cheaper,” she explained.

The WSU research engineer is working with the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton on military applications. The superconductors can improve the electrical system efficiency in jet engines for fighter bombers and transport aircraft because they are lighter and smaller than regular conducting devices. She said that the Air Force’s objective is to provide megawatts of power in small, lightweight packages. Weapons applications include missile development because superconductors operate at higher temperatures with substantial weight savings and lower cooling requirements.

Space related organizations will also be interested, she added, because the research involves finding more efficient power generation in air and space for projects involving spacecraft, satellite orbit transfer vehicles and reusable space launch vehicles.

The research engineer, whose training includes materials science at Cornell University and solid state physics at the Indian Institute of Technology, said medical applications include use in MRI machines and other magnetic medical devices.

Mukhopadhyay is the principal investigator on the project, which also involves the State University of New York at Albany in addition to the Air Force Research Lab.

Source: Wright State University

Explore further: Soft robots that mimic human muscles

Related Stories

Soft robots that mimic human muscles

October 12, 2016

An EPFL team is developing soft, flexible and reconfigurable robots. Air-actuated, they behave like human muscles and may be used in physical rehabilitation. They are made of low-cost materials and could easily be produced ...

ENSO threatens food supply in southern Africa

October 14, 2016

Rapid climate change will lead to greater shortages of food, fuel, energy and animal feed in vast rural areas of eastern and southern Africa. These are the findings of an interdisciplinary study from Lund University in Sweden.

Building a wireless micromachine

September 20, 2016

All around us, hiding just outside our range of vision, are miniscule machines. Tiny accelerometers in our cars sense a collision and tell the airbags to inflate. A Nintendo Wii controller's tiny gyroscopes translate your ...

Scientists put a new twist on artificial muscles

September 26, 2016

In recent years, researchers at The University of Texas at Dallas and colleagues at the University of Wollongong in Australia have put a high-tech twist on the ancient art of fiber spinning, using modern materials to create ...

Metamaterial uses light to control its motion

October 10, 2016

Researchers have designed a device that uses light to manipulate its mechanical properties. The device, which was fabricated using a plasmomechanical metamaterial, operates through a unique mechanism that couples its optical ...

Recommended for you

Team finds Southern East Africa getting wetter, not dryer

October 21, 2016

The prevailing notion that the African continent has been getting progressively drier over time is being challenged by a new study that finds that drought has actually decreased over the past 1.3 million years and that the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.