Superconductors for electrical, defense, space, medical applications

December 15, 2004

A Wright State engineering professor Sharmila Mukhopadhyay recently received a $950,000 grant for superconductor research with applications that interest the electric power generation industry, the military, space technologists and the medical community.
Superconductors can transmit electric current with zero resistance,” she explained, “and our research is centered on finding ways to make these materials more efficient and economical.” She said copper wire is the main conductor now in use, but transmission lines can carry significantly more power if copper can be replaced by superconducting cables. The superconducting material of choice is an oxide of yttrium, barium and copper that will be coated on metal coils.

Sharmila Mukhopadhyay, Ph.D., a professor of materials science and engineering with the Wright State College of Engineering and Computer Science, received funding from the U.S. Department of Energy for the 18-month project.

Mukhopadhyay, who has received $2.3 million for materials research at Wright State during the past seven years, said the energy department and power generation companies have a renewed interest in superconductor research. “We are studying the superconducting materials at their basic, atomic level to identify ways that can increase the efficiency of transmission lines. Superconductors can also be used in high speed magnetic trains and flywheels. Flywheels, or high speed rotating devices, can help the power generation companies store off-peak power, which can later be converted to electricity during peak demand hours. All this technology can help reduce the chances of power blackouts like the major one that hit the Midwest and East Coast last year.”

She said superconductor research in recent years is becoming more popular. “The earlier superconductors used liquid helium as the cooling medium, but the recent ones can use liquid nitrogen, which is much cheaper,” she explained.

The WSU research engineer is working with the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton on military applications. The superconductors can improve the electrical system efficiency in jet engines for fighter bombers and transport aircraft because they are lighter and smaller than regular conducting devices. She said that the Air Force’s objective is to provide megawatts of power in small, lightweight packages. Weapons applications include missile development because superconductors operate at higher temperatures with substantial weight savings and lower cooling requirements.

Space related organizations will also be interested, she added, because the research involves finding more efficient power generation in air and space for projects involving spacecraft, satellite orbit transfer vehicles and reusable space launch vehicles.

The research engineer, whose training includes materials science at Cornell University and solid state physics at the Indian Institute of Technology, said medical applications include use in MRI machines and other magnetic medical devices.

Mukhopadhyay is the principal investigator on the project, which also involves the State University of New York at Albany in addition to the Air Force Research Lab.

Source: Wright State University

Explore further: The future of nuclear energy

Related Stories

The future of nuclear energy

November 28, 2016

Early this year, Rachel Slaybaugh attended a campus mixer on technological innovation. When she introduced herself as a professor of nuclear engineering, other attendees would pause and ask for clarification. She remembers, ...

Engineering team develops self-powered mobile polymers

November 10, 2016

One of the impediments to developing miniaturized, "squishy" robots is the need for an internal power source that overcomes the power-to-weight ratio for efficient movement. An international group involving Inha University, ...

Catching more carbon with less sticky solvents

November 17, 2016

For coal- and natural-gas-fired power plants, scientists want a liquid that captures carbon dioxide. But the water-lean solvents they prefer thicken to the consistency of cold honey the more carbon they catch. Finding better ...

Recommended for you

Saturn's bulging core implies moons younger than thought

December 7, 2016

Freshly harvested data from NASA's Cassini mission reveals that Saturn's bulging core and twisting gravitational forces offer clues to the ages of the planet's moons. Astronomers now believe that the ringed planet's moons ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.