New material could be used in drug delivery system

December 4, 2004

University of Toronto researchers have developed a new class of hybrid materials that could one day move drug delivery systems to the molecular level.
The paper published in the Nov. 26 issue of Science outlines how a U of T research team combined two classes of nanomaterials to create an entirely new composite structure. This new porous architecture may one day act as a nanoscale sieve, enabling researchers to release drug molecules in a slow and controlled way. "We hope one day to create a film of this material and spread it on the skin," says the paper's senior author University Professor Geoffrey Ozin of the Department of Chemistry. "By doing so, drugs can be diffused through the skin, rather than injection, which would guarantee a continuous flow of a drug molecule at a tunable rate and concentration."

To create this new material, Ozin and post-doctoral fellow Kai Landskron combine dendrimers - a special class of highly organized nanosized molecules - with a porous silica material. The functionalized dendrimers are dissolved together with a template in an aqueous solution. The solution causes the dendrimers to react with water and then assemble around the template into a new class of materials called periodic mesoporous dendrisilicas (PMD). The PMD is a honeycomb-like structure with pores measuring about 10 billionth of a metre - and pore walls with internal pores of about one billionth of a metre. This hierarchical construction can enable drug molecules to slowly slip through the various pores to target a particular disease.

"The problem with current drug delivery systems like simple syringes is that when you inject the drug, you often inject initially too high a concentration to ensure it stays in the system, which can be toxic," says Landskron, the study's first author. "With this new type of material, you could release the drug at an appropriate rate and avoid these negative effects. You can fine tune absorption and desorption and allow it to be far more defined than ever before."

Landskron says the new hybrid material may also have potential use in microelectronic applications. As chip components are gradually shrinking to tiny dimensions, new materials are needed to provide packaging on the nanoscale level. "Currently, the silica that insulates chips becomes less effective as they become smaller," says Landskron. "The new porous material could show greater insulating abilities and are interesting as packaging material in microelectronics."

According to Ozin, the next step is to expand on the various ways to alter the structure of PMDs, tailor their properties and develop the basic science that will underpin the exploitation of the PMDs in both drug delivery and microelectronic applications.

Ozin is a Canada Research Chair in Materials Chemistry. The research received funding from the Natural Sciences and Engineering Research Council of Canada.

Source: University of Toronto

Related Stories

Recommended for you

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Model shows how surge in wealth inequality may be reversed

July 30, 2015

(Phys.org)—For many Americans, the single biggest problem facing the country is the growing wealth inequality. Based on income tax data, wealth inequality in the US has steadily increased since the mid-1980s, with the top ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.