Cheaper Flat TVs From Diamond Dust

Dec 16, 2004

Expensive, bulky TV screens could be a thing of the past thanks to a collaboration between the University of Bristol and Advance Nanotech announced today to develop new display technology made from diamond dust.
Advance Nanotech, a US-based company that acquires and commercializes nanotechnology applications worldwide, has committed £1 million to a two year multidisciplinary project combining the University's nanotechnology expertise in the fields of chemistry and physics. It opens up the possibility of cheaper and more power efficient flat panel displays, for use in wide screen digital TVs and many other applications.

The University team comprises lead scientist Dr Neil Fox, Professor Mike Ashfold, Head of Physical and Theoretical Chemistry, and Professor David Cherns, Head of the Microstructures group in the Department of Physics.

Dr Fox explains: "We are thrilled that Advance Nanotech has chosen to enter into partnership with us. Previous government support for our nanodiamond work has allowed us to reach a position where the technology is now ripe for exploitation. Given Bristol's expertise in small scale structures and materials, we are ideally positioned to push forward the barriers of this area of nanotechnology."

This collaboration will also enable scientists to combine diamond nano-particles with other powerful nano-technologies and could lead to the next generation of products in the home and the workplace.

Magnus Gittins, Chief Executive Officer of Advance Nanotech, says: "Today, in collaboration with the University of Bristol, we commence the development of revolutionary new displays for consumer and business markets. The funding we have provided will bridge the gap between first class innovation and marketable solutions for these high-value markets."

Professor Eric Thomas, Vice-Chancellor of the University of Bristol, adds: "Research at the University of Bristol is of the highest standard. It is very exciting to see this knowledge transferred to the outside world and so bring benefit to us all."

Source:

Explore further: Physicists precisely measure interaction between atoms and carbon surfaces

Related Stories

Recommended for you

New 'designer carbon' boosts battery performance

5 hours ago

Stanford University scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured on the cover of the journal ACS Central Sc ...

Self-replicating nanostructures made from DNA

May 28, 2015

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Could computers reach light speed?

May 28, 2015

Light waves trapped on a metal's surface travel nearly as fast as light through the air, and new research at Pacific Northwest National Laboratory shows these waves, called surface plasmons, travel far enough ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.