NASA Investigates Problems With Spirit

October 6, 2004
Spirit's View from 'Engineering Flats'

Engineers on NASA's Mars Exploration Rover team are investigating possible causes and remedies for a problem affecting the steering on Spirit.
The relay for steering actuators on Spirit's right-front and left-rear wheels did not operate as commanded on Oct. 1. Each of the front and rear wheels on the rover has a steering actuator, or motor, that adjusts the direction in which the wheels are headed independently from the motor that makes the wheels roll. When the actuators are not in use, electric relays are closed and the motor acts as a brake to prevent unintended changes in direction.

Engineers received results from Spirit today from a first set of diagnostic tests on the relay. "We are interpreting the data and planning additional tests," said Rick Welch, rover mission manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "We hope to determine the best work-around if the problem does persist."

Spirit and its twin, Opportunity, successfully completed their three-month primary missions in April and five-month mission extensions in September. They began second extensions of their missions on Oct. 1. Spirit has driven more than 3.6 kilometers (2.2 miles), six times the distance set as a goal for mission success. It is climbing into uplands called the "Columbia Hills."

JPL's Jim Erickson, rover project manager, said, "If we do not identify other remedies, the brakes could be released by a command to blow the fuse controlling the relay, though that would make those two brakes unavailable for the rest of the mission." Without the steering-actuator brakes, small bumps or dips that a wheel hits during a drive might twist the wheel away from the intended drive direction.

"If we do need to disable the brakes, errors in drive direction could increase. However, the errors might be minimized by continuing to use the brakes on the left-front and right-rear wheels, by driving in smaller segments, and by adding a software patch to reset the direction periodically during a drive," Erickson said. Engineers believe the steering-brake issue is not related to excessive friction detected during the summer in the drive motor for Spirit's right-front wheel, because the steering actuator is a different motor.

Meanwhile, the team continues to use Spirit's robotic arm and camera mast to study rocks and soils around the rover, without moving the vehicle until the cause of the anomaly is understood and corrective measures can be implemented.

Source: NASA

Explore further: CARS: A brand-by-brand look at new 2016 models

Related Stories

CARS: A brand-by-brand look at new 2016 models

September 8, 2015

The 2016 model year has plenty of workhorses, including new versions of the Toyota Tacoma and Nissan Titan pickups, Chevrolet Malibu and Kia Optima sedans and the Honda Civic small car.

"Hedgehog" robots hop, tumble in microgravity

September 4, 2015

Hopping, tumbling and flipping over are not typical maneuvers you would expect from a spacecraft exploring other worlds. Traditional Mars rovers, for example, roll around on wheels, and they can't operate upside-down. But ...

Modular Robotic Vehicle developed at Johnson Space Center

April 16, 2015

We all know Google's star act for driving's future with its self-driving car. What if NASA were to step up and give us its rendition of a self-driving vehicle? A new video reveals how NASA handles the role. NASA actually ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

How the stick insect sticks (and unsticks) itself

October 7, 2015

New research shows the fluid found on insects' feet does not help them adhere to vertical and inverted surfaces, as previously thought, but may in fact help them to unstick their feet more easily to allow greater control ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.