Spitzer Witnessed Galactic Collision

September 10, 2004
Scene of Galactic Collision

NASA's Spitzer Space Telescope has set its infrared sight on a major galactic collision and witnessed not death, but a teeming nest of life. The colliding galaxies, called the Antennae galaxies, are in the process of merging together. As they churn into each other, they throw off massive streamers of stars and dark clouds of dust. Spitzer's heat-seeking eyes peered through that dust and found a hidden population of newborn stars. The new Spitzer image is reported in one of 86 Spitzer papers published in the September issue of The Astrophysical Journal Supplement. This special all-Spitzer issue comes just after the one-year anniversary of the observatory's launch, and testifies to its tremendously successful first year in space.

"This abundance of Spitzer papers just one year after launch shows that the telescope is truly providing a new window on the universe," said Dr. Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "These papers report the earliest results, so the best is yet to come."

In the latest Antennae galaxies study, Spitzer uncovered a new generation of stars at the site where the two galaxies clash.

"We theorized that there were stars forming at that site, but we weren't sure to what degree," said Dr. Zhong Wang, lead author of the new paper and an astronomer at the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "Now we see that the majority of star-forming activity in both galaxies occurs in the overlap regions where the two meet."

The Antennae galaxies are a classic example of a galactic merger in action. These two spiral galaxies, located 68 million light-years away from Earth, began falling into each other around a common center of gravity about 800 million years ago. As they continue to crash together, clouds of gas are shocked and compressed in a process thought to trigger the birth of new stars. Astronomers believe that the two galaxies will ultimately merge into one spheroidal-shaped galaxy, leaving only hints of their varied pasts.

Galactic mergers are common throughout the universe and play a key role in determining how galaxies grow and evolve. Our own Milky Way galaxy, for example, will eventually collide with our closest neighbor, the Andromeda galaxy.

Previous images of the Antennae taken by visible-light telescopes show striking views of the swirling duo, with bright pockets of young stars dotting the spiral arms. At the center of the galaxies, however, where the two overlap, only a dark cloud of dust can be seen. In the new false-color Spitzer image, which has been combined with an image from a ground-based, visible-light telescope to highlight new features, this cloud of buried stars appears bright red. The visible-light information, on the other hand, is colored blue and indicates regions containing older stars. The nuclei, or centers, of the two galaxies are white.

"This more complete picture of star-formation in the Antennae will help us better understand the evolution of colliding galaxies, and the eventual fate of our own," said Dr. Giovanni Fazio, a co-author of the research and an astronomer at the Harvard-Smithsonian Center for Astrophysics." Fazio is principal investigator for the infrared array camera on Spitzer, which captured the new Antennae image.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. JPL is a division of Caltech. Spitzer's infrared array camera was built by NASA Goddard Space Flight Center, Greenbelt, Md.

Information about Spitzer can be found at www.spitzer.caltech.edu .

Explore further: Inferring the star formation rates of galaxies

Related Stories

Inferring the star formation rates of galaxies

November 23, 2015

Our Milky Way galaxy produces on average a few new stars every year across the entire system. Massive young stars emit large amounts of ultraviolet radiation which heats the local dust, and so the star formation process results ...

Whopping galaxy cluster spotted with help of NASA telescopes

November 4, 2015

Astronomers have discovered a giant gathering of galaxies in a very remote part of the universe, thanks to NASA's Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE). The galaxy cluster, located 8.5 billion ...

Astronomers find galaxy cluster with bursting heart

September 10, 2015

An international team of astronomers has discovered a gargantuan galaxy cluster with a core bursting with new stars - an incredibly rare find. The discovery, made with the help of the NASA/ESA Hubble Space Telescope, is the ...

Astronomers detect the farthest galaxy yet with Keck telescope

September 4, 2015

A team of Caltech researchers that has spent years searching for the earliest objects in the universe now reports the detection of what may be the most distant galaxy ever found. In an article published August 28, 2015 in Astrophysical ...

Black hole is 30 times expected size

September 24, 2015

The central supermassive black hole of a recently discovered galaxy is far larger than should be possible, according to current theories of galactic evolution. New work, carried out by astronomers at Keele University and ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.