Optical fibers and a theory of things that go bump in the light

September 15, 2004

University of California scientists working at Los Alamos National Laboratory have developed a theory describing light pulse dynamics in optical fibers that explains how an interplay of noise, line imperfections and pulse collisions lead to the deterioration of information in optical fiber lines. The theory will help to enhance the performance necessary for high-speed optical communication systems like video on demand and ultra-broadband Internet, and the research has helped establish a new field of inquiry -- the statistical physics of optical communications.

The theory, developed by Los Alamos scientists Michael Chertkov, Yeo-Jin Chung, Ildar Gabitov and Avner Peleg, proposes that an understanding of the physics of signal propagation is important for evaluating and optimizing the performance of optical lines since the natural nonlinearity and disorder of optical fibers results in the corruption of signals traveling through the fiber which, in turn, can lead to information loss. The theory enables scientists to do a comparative analysis of different techniques for the suppression of these information outages.

In addition to the theoretical advance, the team developed, and subsequently patented, a new technique called the pinning method that is capable of reducing the negative impact of optical fiber structural disorder and improving high-speed optical fiber system performance.

Besides the Los Alamos scientists, other collaborators include Igor Kolokolov and Vladimir Lebedev from Russia's Landau Institute and Joshua Soneson from the University of Arizona in Tucson.

Source: DOE/Los Alamos National Laboratory

Explore further: Queen Nefertiti's lost grave is in King Tutankhamun's tomb, archaeologist suggests

Related Stories

Atomic clock comparison via data highways

April 27, 2012

(Phys.org) -- Optical atomic clocks measure time with unprecedented accuracy. However, it is the ability to compare clocks with one another that makes them applicable for high-precision tests in fundamental theory, from cosmology ...

Dedication of Advanced LIGO

May 19, 2015

The Advanced LIGO Project, a major upgrade that will increase the sensitivity of the Laser Interferometer Gravitational-wave Observatories instruments by a factor of 10 and provide a 1,000-fold increase in the number of astrophysical ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.