Noisy nature of atoms

Sep 09, 2004

University of California scientists working at Los Alamos National Laboratory have demonstrated a way to use the random fluctuations that exist naturally in all magnetic systems to perform magnetic resonance studies without disturbing the system's natural state. Conventional magnetic resonance techniques, such as those used in magnetic resonance imaging (MRI) machines, require the excitation and absorption of specific radio-frequency waves by atoms in a magnetic field. These absorption patterns can be used to reveal molecular and magnetic structure. The find could pave the way for perturbation-free magnetic resonance imaging techniques that are useful in fields like nanotechnology and quantum information science where systems containing only a few atoms are becoming commonplace and their associated magnetic fluctuations play an increasingly dominant role.

In research reported in today's issue of the scientific journal Nature , Los Alamos scientists Scott Crooker, Dwight Rickel, Alexander Balatsky and Darryl Smith explain how seemingly random fluctuations in an ensemble of magnetic spins -- called spin noise -- can actually be exploited to perform detailed magnetic resonance, without disturbing the spins from a state of thermal equilibrium. Using a laser technique known as Faraday rotation, the scientists measured the spectrum of spin noise in vapors of magnetic rubidium and potassium atoms. The noise spectrum alone revealed the complete magnetic structure of the atoms.

According to Greg Boebinger, director of the National High Magnetic Field Laboratory (NHMFL), "this work is especially important because a s devices shrink in size to the nanoscale regime, fewer atoms and spins dominate the device behavior and noise processes become more prominent. By drawing on the fluctuation-dissipation theorem, the work at Los Alamos firmly establishes the idea that one scienti st's noise is another scientist' s signal."

This work, performed at the National High Magnetic Field Laboratory facility at Los Alamos, provides a demonstration of the physical relationship known as the "fluctuation-dissipation theorem," which proposes that it is possible to "listen" very carefully to the tiny, intrinsic thermal or quantum-mechanical fluctuations of a physical system. Those fluctuations reveal a number of the properties of that system without having to disturb it from its natural resting state. Typically, in devices like MRI systems, an electromagnetic source must be used to "perturb" the spins of atoms so that they resonate in synchrony at radio frequencies, which are then recorded to create MRI scans.

Alex Lacerda, director of the NHMFL Pulsed Field Facility, said, "this work represents the vital importance of Los Alamos' scientific environment. The collaboration between the NHMFL and the Theoretical Division's Condensed Matter and Statistical Physics group takes full advantage of our scientific talents across the Laboratory."

Explore further: Nano-capsules designed for diagnosing malignant tumours

Related Stories

Solving streptide from structure to biosynthesis

May 16, 2015

Bacteria speak to one another using peptide signals in a soundless language known as quorum sensing. In a step towards translating bacterial communications, researchers at Princeton University have revealed ...

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Recommended for you

Researchers first to create a single-molecule diode

May 25, 2015

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they ...

Engineering phase changes in nanoparticle arrays

May 25, 2015

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.