Innovative R&D and Computational Nanoscience Redefines Nanophase Materials

September 21, 2004

Groundbreaking progress in nanotechnology is giving rise to heightened interest among investors, manufacturers, and other market participants. With progress comes new issues and challenges for theoretical scientists and, accordingly, increased demand for high-end research procedures and tools.

“Most of the research happening now is focused on improving upon existing materials properties or developing new materials,” says Technical Insights Research Analyst Hrishikesh Bidwe. “These materials will initially find use in various high performance industries, such as aerospace and defense. If price can be significantly reduced, consumer applications will probably become the major market for nanophase materials.”

Besides aerospace and defense, nanomaterials also will find increasing use in a variety of applications in various industries, including the automotive, healthcare, medicine, and electronics industries. The dimensional advantages offered by ultra-thin nanoscale films, for example, are optimal for their large-scale integration into micro- and nano-devices, and for device scaling.

In thin film applications, nanotechnology circumvents the disadvantages of having to perform thickness reduction in coatings and thin film materials. Further, the incorporation of nanophase materials has promoted thin film adhesion, providing significant performance advantages.

However, the economic fabrication of ultra-thin film coatings on a large scale poses a significant challenge. It requires precise and strict requirements and extremely clean conditions, since even the most miniature contaminant can adversely affect performance.

“New procedures are also necessary to measure and characterize the mechanical and electrical properties of ultra-thin films,” says Bidwe. “Nanoindentation tests have proven valuable, yet the scope for improvement and introduction of new methods remains vast.”

Nanotech-based quantum dots impart special optical and electrical properties to materials that are significant from fundamental and technological perspectives. Quantum dots are able to emit a wide range of wavelengths of light with changes in size. This property may allow the incorporation of quantum dots into applications such as tunable lasers and other optical components.

Still, much work must be done to reach viable applications. Since even a slight change in its properties can radically alter a quantum dot’s performance, the control of properties often creates difficulties in device applications. In grown quantum dot arrays, quantum dots frequently tend to clump, causing unwanted size variations. This offsets a quantum effect that is critical for optoelectronics.

Researchers have recently developed a technique that allows nanocrystals to self-assemble into sturdy and orderly arrangements, each insulated from the other by a layer of silicon dioxide. This method, which is both inexpensive and potentially commercially viable, prevents quantum dots from clumping.

Research in quantum dots has progressed from continuous improvement of synthesis and manipulation of individual quantum dots to creation of high-density quantum dot assemblies and preliminary fabrication of real-life optoelectronic and biomedical devices.

Other potential applications include the production of lasers, detectors, optical amplifiers, transistors, tunneling diodes, and other devices, and quantum dots may find use in forgery prevention and quantum computing.

“Pioneering developments in fundamental nanotechnology and innovative techniques such computational nanoscience are improving the ability to fabricate materials and incorporate them into devices,” says Bidwe. “With this, the emerging field of nanotechnology is moving out of laboratories toward real-world applications and commercialization.”

Source: Technical Insights

Explore further: Electrons always find a (quantum) way

Related Stories

Electrons always find a (quantum) way

November 17, 2015

Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have demonstrated for the first time how electrons are transported from a superconductor through a quantum dot into ...

Bringing the chaos in light sources under control

November 18, 2015

Noise is an issue in optical telecommunications. And findings means of controlling noise is key to physicists investigating light-emitting diodes or lasers. Now, an Italo-Iraqi team has worked on a particular type of light ...

Quantum dots light up under strain

September 23, 2015

Semiconductor nanocrystals, or quantum dots, are tiny, nanometer-sized particles with the ability to absorb light and re-emit it with well-defined colors. With low-cost fabrication, long-term stability and a wide palette ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.