Molecular Biologists Uproot the Tree of Life

September 9, 2004

One of science's most popular metaphors — the "tree of life," with its evolutionary branches and roots, showing groups of bacteria on the bottom and multicellular animals on the higher branches — turns out to be a misnomer, UCLA molecular biologists report in the Sept. 9 issue of the journal Nature. "It's not a tree; it's actually a ring of life," said James A. Lake, UCLA professsor of molecular biology. "A ring explains the data far better." Lake initially titled the Nature article, "One Ring to Rule Them All." The ring of life has significant implications for eukaryotes (cells with nuclei), the group that includes all multicellular forms of life, such as humans, animals and plants.

"Through the use of genomics, we show that the fusion of two prokaryotes — a life form that does not have a cellular nucleus — created the first eukaryote," Lake said. "There have been theories, but we have never known where eukaryotes came from before. Eukaryotes inherited two sets of genomes from very different prokaryotes."

One prokaryote ancestor branches from deep within an ancient photosynthetic group of microscopic single-celled bacteria called the proteobacteria. The group is primarily photosynthetic, but today also includes non-photosynthetic E. coli and human pathogens. The other group is related to the archaeal prokaryotes, some members of which today can live at temperatures hot enough to boil water (160–230 degrees Fahrenheit) and can be found in hot sulfur springs and geothermal ocean vents worldwide.

"At least 2 billion years ago, ancestors of these two diverse prokaryotic groups fused their genomes to form the first eukaryote, and in the processes two different branches of the tree of life were fused to form the ring of life," Lake said. "A major unsolved question in biology has been where eukaryotes came from, where we came from. The answer is that we have two parents, and we now know who those parents were.

"If we go back a hundred billion generations, our ancestor was not a human, and wasn't even a primate," Lake added. "But we are distantly related to archaeal eocyte- and proteobacterial-ancestors, just as we are related to our parents and grandparents."

The research, based on an analysis of more than 30 genomes, was federally funded by the National Science Foundation, the Department of Energy, the National Institutes of Health and NASA's Astrobiology Institute.

Lake conducted the research with Maria C. Rivera, a research scientist in UCLA's department of molecular, cell, and developmental biology, and UCLA's astrobiology program. They made new algorithms, conducted a detailed mathematical analysis and studied the evolution of genomes.

"We followed the genes that make up organisms through time, and saw the fusion of organisms," Lake said. "As we learn more about the organisms that came together, we will learn more about their genetic background. The ring will lead to a better understanding of eukaryotes."

Source: UCLA

Explore further: Rock art draws scientists to ancient lakes

Related Stories

'Bathtub rings' suggest Titan's dynamic seas

July 28, 2015

Saturn's moon, Titan, is the only object in the Solar System other than Earth known to have liquid on its surface. While most of the lakes are found around the poles, the dry regions near the equator contain signs of evaporated ...

Ear bones reveal spawning secrets of Lake Erie walleye

July 29, 2010

Ecologists have long believed that fish tend to return to the same river where they hatched in order to spawn. But researchers at Ohio State University have determined that the old rule doesn't always apply -- not for Lake ...

Bringing a bit of Mars back home

November 9, 2010

If there is evidence of life on Mars, it will be found in the planet’s rocks. And as most scientists who study Mars will tell you, the best way to learn about martian rocks is to bring a few back to Earth.

Recommended for you

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Vito
not rated yet Aug 21, 2009
"If we go back a hundred billion generations, our ancestor was not a human, and wasn't even a primate," Lake added. "But we are distantly related to archaeal eocyte- and proteobacterial-ancestors, just as we are related to our parents and grandparents."


Honestly! Proving that humans came from primates is in itself very difficult. Now some scientists are claiming that we all arise from the fusion of two prokaryotes?! Isn't this a huge quantum leap from what is objective and rational?! This is definitely very imaginative.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.