Mathematical analysis: It may not be possible to create 'perfect lens'

September 28, 2004

Researchers at Purdue University and the Massachusetts Institute of Technology have completed a mathematical analysis showing that it isn't quite possible to build a so-called "perfect lens," but the underlying theory still makes it feasible to design better imaging systems.
A perfect lens would be able to focus light more narrowly than conventional lenses, making it possible to etch finer electronic circuits and create more compact and powerful computer chips. Such lenses also might lead to better fiberoptic communications systems and more precise medical imaging technologies.

Researchers have now shown, through rigorous mathematical analysis, that a perfect lens is not possible, said Kevin J. Webb, a professor of electrical and computer engineering at Purdue.

"It may be possible to build a better imaging system, but it could never be perfect," Webb said. "That's the bottom line."

The findings are detailed in a paper appearing online this week in Physical Review E, a journal published by the American Physical Society. The paper was written by Webb, Purdue engineering doctoral student Ming-Chuan Yang, MIT doctoral student David Ward and Keith Nelson, a professor of physical chemistry at MIT.

Perfect lenses theoretically could compensate for the loss of a portion of the light transmitting an image as it passes through a lens. Lenses and imaging systems could be improved if this lost light, which scientists call "evanescent light," could be restored.

Central to the concept of a perfect lens is the phenomenon called refraction, which occurs when electromagnetic waves, including light, bend slightly when passing from one material into another. Refraction causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears bent when viewed from the outside. Each material has its own "refraction index," which describes how much light will bend in that particular material.

All natural materials, such as glass, air and water, have positive refractive indices. In the late 1960s, researchers hypothesized what would happen if a material had a negative refractive index. At the interface between a material with a positive index and a material with a negative index, light would bend in the opposite direction. In 2000, researcher John Pendry at the Imperial College, London, theorized that slabs of such material might be used to create a perfect lens. The idea was that an imaging system that used a combination of positive and negative refraction could restore the lost evanescent light.

No materials have yet been created that have negative refraction indices for visible light, but in 2001 researchers at the University of California, San Diego, used combinations of copper rings and wires to cause a microwave beam to undergo negative refraction, enlivening the debate about the possibility of perfect lenses.

"Through a rigorous mathematical analysis, however, we have been able to show that, while a negative refraction index could conceivably be used to build better imaging systems, a perfect lens is not possible," Webb said.

The research was supported in part by the U.S. Army Research Office and the National Science Foundation.

"It’s always useful to use effects found either in nature or in fabricated structures to improve optical systems," said Fil Bartoli, a program director in the Electrical and Communications Systems Division within the NSF’s Engineering Directorate. "But any time you employ some cute effect, such as negative refraction, it’s important to quantify it and to determine to what extent it could be useful.

"That is what Dr. Webb and his colleagues tried to do, and I think that they succeeded in quantifying it and making a useful statement."

The concept of using materials with negative refractive indices to improve imaging systems is likely to receive continued attention in the years to come, he said.

"It’s a topical area that has a fair amount of interest in the scientific and engineering communities and still needs to be investigated," Bartoli said.

Source: Purdue University

Explore further: A miniature accelerator to treat cancer

Related Stories

Bringing back the magic in metamaterials

July 17, 2015

A single drop of blood is teeming with microorganisms—imagine if we could see them, and even nanometer-sized viruses, with the naked eye. That's a real possibility with what scientists call a "perfect lens." The lens hasn't ...

What causes lightning?

July 10, 2015

Thunder and lightning. When it comes to the forces of nature, few other things have inspired as much fear, reverence, or fascination – not to mention legends, mythos, and religious representations. As with all things in ...

The race for better batteries

June 15, 2015

"The worldwide transition from fossil fuels to renewable sources of energy is under way…" according to the Earth Policy Institute's new book, The Great Transition.

Moving sector walls on the nano scale

June 5, 2015

Scientists at ETH Zurich are able to visualize and selectively modify the internal order of an intensively researched class of materials known as multiferroics. This opens the door to promising applications in electronics. ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.