Faster, more precise MRI for the medical world

September 25, 2004

Magnetic Resonance Imaging (MRI) revolutionised the medical world two decades ago, providing doctors with an unparalleled view inside the human body. Now, MRI-MARCB has taken MRI to a new level with a system that enhances image quality, reduces scan time and improves diagnosis.

Currently in use in several hospitals around the world, the MRI-MARCB system overcomes one of the principal problems in producing MR images of the brain and heart: movement.

“Though MRI is an excellent non-intrusive imaging modality with excellent soft tissue contrast it is susceptible to motion because it can take several seconds or even minutes to acquire an image,” explains Kay Nehrke at Philips Medical Systems in Germany, coordinator of this IST-programme funded project. “During that time the patient’s heart is beating and they’re breathing – it’s like taking a photo of a moving object. If the photo takes one second the image will appear blurry. If you follow the object with the camera, however, you’ll get a clear image and that is what we’ve done in a sense.”

The project partners used two different but complimentary techniques to overcome the motion problem. In the case of heart scans a software system was developed to create a mathematical model of the pattern of movement caused by breathing and heart beat. That information is then used to compensate for the motion effects in the resulting MR image. For brain scans, where even the slightest movement of a patient’s head could cause images to be unusable, a camera system was employed alongside the software to track and compensate for motion.

“Without compensation images can be filled with artefacts, making it hard to tell whether you are looking at a clogged artery or just a poor image,” Nehrke says.

With the MRI-MARCB system image quality is greatly improved resulting in more precise diagnosis, while at the same time reducing the time it takes to perform an MRI scan.

“Trials at 10 hospitals with around 200 patients showed a 30 per cent reduction in scan time because of the compensation for movement,” Nehrke notes. “As we all know time is money so this offers important cost savings for hospitals, while patients feel more comfortable because they do not have to worry so much about not moving or even breathing.”

According to the project coordinator, the software can be easily integrated into existing MRI platforms, and the camera system is “relatively inexpensive given the advantages it provides.”

MRI-MARCB is currently being used at hospitals in Germany, Denmark, Japan and the United States, with the project partners planning further commercialisation activities and development in the future.

Explore further: New method could detect blood clots anywhere in the body with a single scan

Related Stories

What has nuclear physics ever given us?

August 10, 2015

This year marks the 103rd anniversary of the birth of nuclear physics, when Ernest Rutherford, Hans Geiger and Ernest Marsden's experiments at the University of Manchester led them to conclude that atoms consist of tiny, ...

NIST PET phantoms bring new accuracy to medical scans

July 29, 2015

Teaming with a medical equipment company, researchers at the National Institute of Standards and Technology (NIST) have demonstrated the first calibration system for positron emission tomography (PET) scanners directly tied ...

Moore's Law is 50 years old but will it continue?

July 20, 2015

It's been 50 years since Gordon Moore, one of the founders of the microprocessor company Intel, gave us Moore's Law. This says that the complexity of computer chips ought to double roughly every two years.

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.