New structure found deep within West Antarctic Ice Sheet

September 23, 2004

Ice sheet more susceptible to change than previously thought

Scientists have found a remarkable new structure deep within the West Antarctic Ice Sheet which suggests that the whole ice sheet is more susceptible to future change than previously thought. The discovery, by scientists from Bristol University and the British Antarctic Survey in collaboration with US colleagues, is reported this week (September 24) in the international journal Science.

The stability of the West Antarctic Ice Sheet has been hotly debated since the 1960s because of its potential to raise global sea level by around 5 m over several centuries. The potential impacts of a major change in the West Antarctic ice sheet are severe – sea level rise will be fantastically expensive for developed nations with coastal cities and dire for poor populations in low-lying coastal areas.

Lead author Prof Martin Siegert of Bristol University said, 'There is a great deal of speculation that global warming may cause sea levels to rise due to the melting of ice sheets. Until now, scientific observations suggested that change to the West Antarctic Ice Sheet would be restricted to the edges implying that large-scale instability of the ice sheet is unlikely. This new discovery deep within the ice means that we need to re-think our current assessment of the risk of collapse of this ice sheet.'

The structure - a distinctive fold in the ice, 800m deep by 50 km long - was detected using ice-penetrating radar. Ice sheets normally consist of flat layers of ice, so finding this huge fold was a complete surprise. Its presence suggests that a few thousand years ago surface ice at the centre of the ice sheet was moving rapidly and being 'drawn down' towards the bottom of the ice sheet.

More recently the rate of the ice flow has changed from fast to slow. The direction of flow has also changed. The most likely explanation for these changes is the 'switching-off' of a large ice stream at the margin of the ice sheet several centuries ago. These changes imply that the centre of the ice sheet is more mobile than scientists previously realised, requiring them to rethink existing models.

Ice sheet

The Antarctic ice sheet is the layer of ice up to 5000 m thick covering the Antarctic continent. It is formed from snow falling in the interior of the Antarctic which compacts into ice. The ice sheet slowly moves towards the coast, eventually breaking away as icebergs which gradually melt into the sea.

The ice sheet covering East Antarctica is very stable, because it lies on rock that is above sea level and is thought unlikely to collapse. The West Antarctic is less stable, because it sits on rock below sea level.

If the ice sheet does collapse, it is more likely to be part of a natural collapse cycle, or as a response to climatic change that occurred many thousands of years ago, rather than a response to current climatic change.

Source: University of Bristol & British Antarctic Survey

Explore further: Analyzing Ross Ice Shelf radar data

Related Stories

Analyzing Ross Ice Shelf radar data

November 20, 2015

The lines of data are slowly creeping across our Ross Ice Shelf GIS map and with each new line comes an improved understanding of Ross Ice Shelf. What can you learn from a 'snapshot' of data? The radar image above contains ...

Geophysics could slow Antarctic ice retreat

November 10, 2015

The anticipated melting of the massive West Antarctic Ice Sheet could be slowed by two big factors that are largely overlooked in current computer models, according to a new study.

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.