First Battery Based on 'Nanograss'

Sep 28, 2004

mPhase Technologies and Lucent Technologies today announced a major milestone for future commercialization of a nanotechnology-based battery. Lab tests, which have been replicated, proves it is possible to fabricate nanotech-based batteries, which can store and generate electric current. The project is based on a joint program with Bell Labs, the R&D arm of Lucent Technologies.
The prototype battery is based on a Bell Labs discovery that liquid droplets of electrolyte will stay in a dormant state atop microscopic structures called "nanograss" until stimulated to flow, thereby triggering a reaction producing electricity.

The prototype demonstration was conducted at Lucent's New Jersey Nanotechnology Consortium (NJNC), one of the world's most advanced design, development and fabrication facilities for nanotechnology, based at Bell Labs in Murray Hill, N.J. The companies had previously announced a broad agreement to develop and commercialize this technology.

The prototype battery is based on a Bell Labs discovery that liquid droplets of electrolyte will stay in a dormant state atop microscopic structures called "nanograss" until stimulated to flow, thereby triggering a reaction producing electricity. The experiment proved that this super-hydrophobic effect of liquids can permit precise control and activation of the batteries on demand.

Future batteries based on this technology have the potential to deliver far longer shelf life and better storage capacity than existing battery technology. Potential initial applications for this technology may include defense, industrial, healthcare and consumer electronics. mPhase is also targeting the nanobattery for use in a technically-improved, lighter weight battery design.

"The theory behind the nanobattery is now proven in practical terms, and we are delighted to proceed with development of prototypes to meet initial customer requirements," said Ronald A. Durando, CEO of mPhase Technologies. "Considering that we have come this far in only six months of collaboration with Bell Labs and the NJNC illustrates the solidity of this technical approach and bodes well for practical commercialization."

"The use of nanograss for battery technology is an exciting development for the fields of nanotechnology and power management," said Dave Bishop, vice president of nanotechnology research at Bell Labs and president of the New Jersey Nanotechnology Consortium. "In general, improvements in battery technology have come very slowly in comparison to accelerating development cycles such as Moore's Law in semiconductors. We believe nanotech, specifically nanograss technology, will allow us to make a significant leap forward in battery capabilities."

mPhase and Lucent announced an agreement in March 2004, under which mPhase plans to commercialize the nanobattery under license from Lucent. mPhase projects its nanobattery to be commercially available in 12-15 months, and plans to produce the technology packaged in various configurations. A primary development goal is to create a battery that could have a shelf life lasting decades, yet can be activated instantaneously.

Source: Lucent

Explore further: New electronic stent could provide feedback and therapy—then dissolve

Related Stories

Nikola Labs phone case harvests back wasted energy

May 06, 2015

If you click on the Nikola Labs site you will find an announcement that the group plans to go up on Kickstarter soon and they invite your email signup to learn more. Then at the bottom of the page is an ic ...

CLAIRE brings electron microscopy to soft materials

May 14, 2015

Soft matter encompasses a broad swath of materials, including liquids, polymers, gels, foam and - most importantly - biomolecules. At the heart of soft materials, governing their overall properties and capabilities, ...

Chemistry student makes sun harvest breakthrough

May 06, 2015

The sun is a huge source of energy. In just one hour, Earth is hit by so much sunshine that humankind could cover its energy needs for an entire year, if only we knew how to harvest and save it. But storing ...

Image: Into the depths of the electromagnetic spectrum

May 05, 2015

It can be difficult in our everyday lives to appreciate the extraordinary range of wavelengths in the electromagnetic spectrum. Electromagnetic radiation—from radio waves to visible light to x-rays—travels ...

Recommended for you

Self-replicating nanostructures made from DNA

50 minutes ago

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Could computers reach light speed?

3 hours ago

Light waves trapped on a metal's surface travel nearly as fast as light through the air, and new research at Pacific Northwest National Laboratory shows these waves, called surface plasmons, travel far enough ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.