Researchers Make More Accurate Observation of Earth System Possible

Sep 22, 2004

Researchers at the Faculty of Aerospace Engineering of TU Delft have succeeded in modelling the rotational behaviour of two satellites with unprecedented accuracy. This makes it possible to model the orbit of the satellites much more accurately and this means that changes on earth observed by the satellite are also more accurate, for example, melting of the polar icecaps or the transport of water and atmospheric mass around the globe.

Satellites often have a rotational movement after being launched. This rotation and the mechanical characteristics of the satellites influence their orbits. This phenomenon was previously described using a number of (incidental) measurements and a rough model. The model created by the Delft PhD Student Nacho Andrés and his supervisor Ron Noomen, together with colleagues from the United States, Italy and Japan, removes much uncertainty about the behaviour of satellites.

The rotational movement of satellites varies in time, from rapid movement, to almost none at all. Both situations have very different consequences for the temperature distribution on the satellite’s surface, and therefore on the size and direction of the so-called thermal forces that result from non-uniform heat radiation. These thermal forces are incredibly small, a factor 1013 smaller than the gravity that governs our everyday lives. Still, being able to calculate these small forces is important in the calculation of a satellite’s orbit.

The model that the researchers of the department of Earth Observation and Space Systems together with their international colleagues have developed, represents the orbital behaviour of the LAGEOS-1 and LAGEOS-2 satellites (launched in 1976 and 1992 respectively) with extreme accuracy (up to 1 cm). The model, called LOSSAM (LAGEOS Spin Axis Model), is based on independent observations of the rotation of satellites. It computes a whole range of forces that act on the satellites. LOSSAM provides an accuracy improvement of up to 50% over previous models. The new model is especially relevant for the rotational behaviour of LAGEOS-1 since 1998, because here, other models fail to produce results.

The research results have been published in a recent edition of the scientific Journal of Geophysical Research. In a follow-up project, the thermal and conductive characteristics of the satellites will be included, allowing a comprehensive thermal model to be constructed. This will, of course, further increase the accuracy of the model and therefore the satellites’ readings.

Source: TU Delft

Explore further: The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy

Related Stories

Big data keeping track of bushfires

Apr 24, 2015

More than 5000 bushfires occurred in WA between July 2013 and July 2014, making the development of the Aurora Bushfire Detection System a big deal for local communities.

Heart of the black auroras revealed by Cluster

Apr 09, 2015

Most people have heard of auroras - more commonly known as the Northern and Southern Lights - but, except on rare occasions, such as the recent widespread apparition on 17 March, they are not usually visible ...

Catching dead satellites with nets

Mar 23, 2015

One of humanity's oldest technologies, the humble fishing net, may yet find a new role in space: bringing down dead satellites.

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

Confirmation bias in studies of gamma ray bursts

Dec 16, 2014

Our understanding of gamma ray bursts (GRBs) – flashes of gamma rays from explosions in distant galaxies – since they were discovered more than 50 years ago may not be as solid as first thought.

Recommended for you

What was here before the solar system?

22 hours ago

The solar system is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The solar system has nothing on the universe. It's been around for 13.8 billion years, give or take a few hundred ...

What is lunar regolith?

23 hours ago

When you're walking around on soft ground, do you notice how your feet leave impressions? Perhaps you've tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some ...

Herschel's hunt for filaments in the Milky Way

23 hours ago

Observations with ESA's Herschel space observatory have revealed that our Galaxy is threaded with filamentary structures on every length scale. From nearby clouds hosting tangles of filaments a few light-years ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.