Model unscrambles complex crystallization puzzle

Aug 30, 2004
simulated images

The patterns that form as plastics, metals and many other materials crystallize can vary incredibly, ranging from sea-urchin-like spheres to elaborate tree-like branches. Now, Hungarian and National Institute of Standards and Technology scientists report in the September issue of Nature Materials* that they have developed a way to predict the polycrystalline microstructures that will form as complex liquid mixtures cool and solidify.

Ultimately, the team's new simulation tool could help manufacturers of everything from plastic bags to airplane wings to design new products with improved strength, durability and other properties.

Image: Four sets of simulated images show the striking similarities between crystals "grown" under different conditions. The first two columns on the left show crystals grown with increasing amounts of impurities. The top row crystal has no "dirt," it has a symmetric crystal pattern (yellow image) and it has no "grains"— all the molecules are aligned in the same direction (blue image.) As greater amounts of impurities are added, the crystal grows more and more randomly.

The two columns on the right show crystals grown with increasing differences between the speed the crystal naturally wants to grow and the speed that liquid molecules can rotate into alignment with the growing crystal or be forced to solidify into a new grain. This type of difference happens in the real world when liquid alloys or polymers are supercooled substantially below the temperature that they would naturally solidify. The low temperature tends to speed up the crystallization process but the increasing viscosity of the liquid makes it harder for molecules to move into aligned grains, so the crystal grows more randomly.

Images generated with the team's mathematical model match up almost feature for feature with the seemingly random crystal patterns formed in experiments as temperatures or other processing variables are modified. The model accurately predicts how both impurities (or additives) and process differences affect the sizes, shapes and orientations of crystals that form during the so-called supercooling process.

Whether initiated by "dirt" or by processing conditions, the resulting patterns can be strikingly similar. This "duality in the growth process," notes NIST's James Warren, may help explain why polycrystalline growth patterns are so prevalent in polymers and other materials derived from complex mixtures.

Findings based on the model indicate that instabilities along the boundary between liquid and solid areas during solidification effectively clash with the otherwise orderly process of crystallization. Tiny crystals-in-the-making move and position themselves along the growth front, assuming an orientation peculiar to the energy conditions at their location. Varying local conditions produce crystals in seemingly disordered arrays, accounting for the rich diversity of microstructural patterns.

Laszlo Granasy, of Hungary's Research Institute for Solid State Physics and Optics, led the research effort. *L. Gránásy, T. Pusztai, T. Börzsönyi, J.A. Warren, and J.F. Douglas. A general mechanism of polycrystalline growth. 2004. Nature Materials advance on-line publication, Aug. 8, 2004.

Source: NIST

Explore further: Kyocera to bring solar farm transformation to idle golf course

Related Stories

Modeling how thin films break up

Jun 19, 2015

Excess surface energy from unsatisfied bonds is a significant driver of dimensional changes in thin-film materials, whether formation of holes, contracting edges, or run-away corners. In general, this break-up ...

Engineers show how 'perfect' materials begin to fail

Jun 04, 2015

Crystalline materials have atoms that are neatly lined up in a repeating pattern. When they break, that failure tends to start at a defect, or a place where the pattern is disrupted. But how do defect-free ...

Building a better microscope to see at the atomic level

Jun 01, 2015

One of the more famous images in biology is known as "Photo 51," an image of DNA that chemist Rosalind Franklin and Raymond Gosling created in 1952 by shooting X-rays through fibers of DNA and analyzing the ...

Recommended for you

Solar Impulse 2 pilot becomes aviation legend

Jul 04, 2015

At 62 years of age, Swiss Solar Impulse 2 pilot Andre Borschberg has made aviation history with a record breaking solo flight across the Pacific that he has called "an interior journey".

Facegloria: Facebook for Brazil's Evangelicals

Jul 04, 2015

Fluffy clouds waft across a blue sky as you log in and while you chat with friends, Gospel music rings out: welcome to Facegloria, the social network for Brazilian Evangelicals.

Mexico City proposes regulations for Uber

Jul 04, 2015

Mexico City is proposing regulations that would allow Uber and other smartphone-based ride-sharing apps to operate, while requiring drivers and cars to be registered, the city's Office of Legal and Legislative Studies said ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.