NASA to Test First Mars - Earth Laser Communication Link

August 9, 2004
Composite image of Earth and Mars, from photographs taken by the Galileo orbiter and the Mars Global Surveyor. Image courtesy (N

A NASA–MIT Lincoln Laboratory team will forge the first laser communication link between Mars and Earth. This unique experiment, part of NASA's Vision for Space Exploration, will greatly benefit the transmission of data from robotic spacecraft.

In 2010, the Mars Laser Communication Demonstration (MLCD) will test the first deep-space laser communication link, which promises to transmit data at a rate nearly ten times higher than any existing interplanetary radio communication link. MLCD will fly on the Mars Telecommunications Orbiter spacecraft, which is planned for launch in 2009. The experiment is a partnership among NASA's Goddard Space Flight Center, NASA's Jet Propulsion Laboratory (JPL), and MIT’s Lincoln Laboratory (MIT/LL).

"If we are planning to put people on Mars, we'll need highly reliable communication links with high data rates, and our team wants to show how this can be done with lasers," said Rick Fitzgerald, Project Manager at NASA Goddard.

"Lincoln Lab is very excited about this program because it challenges us, and it provides an opportunity for the country to field, in-space, a very advanced system far earlier than might otherwise be possible," said Dr. Roy Bondurant, leader of the MIT/LL team.

The NASA-funded project is managed by Goddard, which also provides systems engineering management and mission assurance functions. JPL provides the principal investigator and the ground network development, with MIT/LL responsible for the flight laser communication terminal development and systems engineering. Goddard and MIT/LL each will have a co-investigator on the team.

The expected data rate varies depending on Mars's position in its orbit, the weather and atmospheric conditions on Earth, and whether reception is occurring in daytime or nighttime. When Mars is at its farthest point from Earth and the reception is occurring during daytime, the team expects to receive data at a rate of a million bits per second, but when Mars is at its closest approach and reception is at night, the rate could be thirty times higher. Today, the maximum data rate transmitted to Earth by spacecraft at Mars is about 128,000 bits per second (for NASA's Mars Odyssey spacecraft).

Lasers have not been used for deep-space communications until now because they first had to be made reliable and efficient enough for use in spacecraft millions of miles from Earth. Additionally, the radio frequencies traditionally used for deep space can pass through clouds, while laser (optical frequencies) can be partially to completely blocked by them. The project hopes to overcome this limitation by employing two separate ground terminals, on the chance that if one terminal is clouded over, the other might be clear.

Source: NASA

Explore further: Team to investigate possibility of using directed energy propulsion for interstellar travel

Related Stories

Technique reveals age of planetary materials

January 20, 2015

The key to understanding the geologic history of the Solar System is knowing the ages of planetary rocks. Researchers have developed an instrument that is not only capable of dating rocks, but also is composed entirely of ...

Mars mission boost welcomed by scientists

December 15, 2014

University of Leicester scientists, who are closely involved in the European mission to Mars –ExoMars- have welcomed support from the Government for the project.

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.