Kavli Gift Brightens Study of Dark Energy

August 4, 2004
Kavli gift brightens study of dark energy

MIT research on the most exciting questions in astrophysics and space science has been recognized by a $7.5 million gift from the Kavli Foundation that will jumpstart new studies of the cosmos.

"The Kavli gift allows us to invest in new scientific areas and new technologies at the forefront of these fields," said Professor of Physics Jacqueline N. Hewitt. "We can bring new tools to bear on some of the most interesting questions before us: What is the dark energy that appears to pervade the universe? How did the first star form? How does gravity work?" Hewitt is director of MIT’s Center for Space Research, which will be renamed the Kavli Institute for Astrophysics and Space Research (KIASR).

“I am extremely pleased that the Kavli Institute for Astrophysics and Space Research at MIT is joining the network of Kavli Institutes,” said Kavli Foundation Chairman and philanthropist Fred Kavli. “MIT has an outstanding record of research accomplishments and the KIASR will be a welcome and eminent partner to the other Kavli Institutes."

Kavli’s lifelong work in instrumentation for the aerospace and automotive industries piqued his interest in the MIT center, which has a unique capacity to design and fabricate highly specialized scientific instrumentation for use in such important initiatives as the Chandra X-Ray Observatory and the LIGO project, which seeks to detect the gravitational waves predicted by Einstein.

MIT President Charles M. Vest praised Kavli “for the wisdom of focusing his philanthropy on fundamental science. Our hope is that this grant will mark the start of a long and fruitful relationship between MIT and the Kavli Foundation, which has quickly established itself as a leader in funding scientific research at the cutting edge of astrophysics, neuroscience and nanoscience."

MIT Provost Robert A. Brown said, “The establishment of the KIASR at MIT is a wonderful development for MIT and for astrophysics research. The new resources will greatly enhance the science that can be accomplished by our faculty, students and research staff.”

Said MIT’s Dean of Science, Robert J. Silbey, “The entire physics community at MIT will benefit from this wonderful development that will enhance our efforts in both observational and theoretical astrophysics.”

Among other activities, KIASR will be home to three-year Kavli Research Programs that will enable the exploratory and innovative work necessary to develop new research areas. The inaugural program, led by Professor of Physics Edmund Bertschinger, will explore dark energy and dark matter. Over ninety-five percent of the mass-energy in the universe is in a form other than conventional atomic matter. The normal stuff of laboratory physics (and all science and technology) is little more than the froth on a cosmic ocean of dark matter and energy.

Bertschinger’s team, which includes five other leading scholars in cosmology, particle physics and astrophysics, will work toward determining the composition and properties of dark matter and energy. Ultimately the research could advance our understanding of the deepest aspects of nature, including the origins of space, time, and matter.

The new MIT institute is the tenth created by the Kavli Foundation since its founding in December 2000. All focus on neuroscience, cosmology, or nanoscience. “I have selected these three areas of emphasis because I believe they provide the greatest opportunity for major scientific breakthroughs and will have long-range benefits for humanity,” said Kavli.

The nine other Kavli Institutes are located at Columbia University (brain science), Stanford (particle astrophysics & cosmology), University of California at San Diego (brain & mind), University of California at Santa Barbara (theoretical physics), Delft University of Technology in the Netherlands (nanoscience), Yale (neuroscience), Cornell University (nanoscale science), California Institute of Technology (nanoscience), and University of Chicago (cosmological physics).

Source: MIT

Explore further: TESS mission will provide exciting exoplanet targets for years to come

Related Stories

MIT space cameras take first pictures

October 17, 2005

X-ray cameras designed by MIT astrophysicists are a key component of a new instrument aboard an orbiting Japanese observatory that will probe the secrets of such phenomena as exploding stars.

MIT to lead development of new telescopes on moon

February 19, 2008

NASA has selected a proposal by an MIT-led team to develop plans for an array of radio telescopes on the far side of the moon that would probe the earliest formation of the basic structures of the universe. The agency announced ...

MIT instrument studies edge of sun's bubble

July 8, 2008

The Voyager 1 and 2 spacecraft have traveled beyond the edges of the bubble in space where the sun's constant outward wind of particles and radiation slams into the interstellar medium that pervades our galaxy. The first ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.