Electric-Field-Induced Phase-Separation of Liquid Mixtures

August 9, 2004
Temperature quench of the system

Researches have shown that electric fields can control the phase separation behaviour of mixtures of simple liquids under practical conditions, provided that the fields are non-uniform. This direct control over phase separation behaviour depends on field intensity, with the electrode geometry determining the length-scale of the effect. This phenomenon will find a number of nanotechnological applications, particularly as it benefits from field gradients near small conducting objects.

Ludwik Leibler and colleagues at the City of Paris Industrial Physics and Chemistry Higher Educational Institution (ESPCI) have predicted theoretically and demonstrated experimentally that reversible phase separation can be induced in ordinary liquid mixtures under practical conditions provided non-uniform fields are used.

It is exciting and astonishing that such a simple but fundamental physics has not been explored so far. In some sense this is the simplest electro-optical effect that can exist: it does not require anything from the molecules other than having a modestly different dielectric constant. This is contrast to all other electro-optical effects (e.g. liquid crystals, birefringent molecules, etc.). The results are reported in the 29 July issue of Nature.

They predicted and demonstrated that applying a voltage of 100 V across unevenly spaced electrodes about 50 µm apart, can reversibly induce the demixing of paraffin and silicone oil at about 1 K (and more) above the phase transition temperature of the mixture. When the field gradients are turned off, the mixture becomes homogeneous again.

How the method works
When neutral object (say a colloidal particle) is placed in a field gradient it is attracted towards an electrode. This is due to a well known dielectrophoretic force. Here, this effect is used to separate molecules of liquids with different dielectric constant. When field gradients are high enough, phase separation is induced. A sharp interface, which is a signature of phase separation, is formed even though electric field varies smoothly.

Electric-field-induced phase-separation
Electric-field-induced phase-separation

Similar ideas to those of the paper can be used to compensate gravity effects and produce zero-gravity conditions in mixtures and suspentions; or liquid phase separation can be efficiently induced in a centrifuge.

The effect benefits from decrease of the size of the electrodes (larger fields and and shorter time constants). Hence, it seems ideally suited for microfluidic applications (liquid separation and distillation, light guiding and deflection, etc.) The effect can be also induced by electromagnetic radiation (laser tweezers).

Explore further: Neural qubits: Quantum cognition based on synaptic nuclear spins

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

IRIS and Hinode: A Stellar research team

August 25, 2015

Modern telescopes and satellites have helped us measure the blazing hot temperatures of the sun from afar. Mostly the temperatures follow a clear pattern: The sun produces energy by fusing hydrogen in its core, so the layers ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.