Chandra catches early phase of cosmic assembly

August 15, 2004

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which envelopes hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. The Marshall Center manages the Chandra program.

A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which envelopes hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution.

"We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled."

The complex, known as Abell 2125, is about 3 billion light years from Earth and is seen at a time about 11 billion years after the Big Bang. This is a period when astronomers believe many galaxy clusters are formed. Chandra's Abell 2125 image shows several huge elongated clouds of multimillion-degree-gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster.

Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron.

The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms.

Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter.

Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process.

Frazer Owen (National Radio Astronomy Observatory) and Michael Ledlow (Gemini Observatory) are co-authors on the upcoming Astrophysical Journal paper. Chandra observed Abell 2125 with its Advanced CCD Imaging Spectrometer on August 24, 2001, for approximately 22 hours.

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Additional information and images are available at: chandra.harvard.edu

Explore further: Embryonic cluster galaxy immersed in giant cloud of cold gas

Related Stories

Embryonic cluster galaxy immersed in giant cloud of cold gas

December 1, 2016

Astronomers studying a cluster of still-forming protogalaxies seen as they were more than 10 billion years ago have found that a giant galaxy in the center of the cluster is forming from a surprisingly-dense soup of molecular ...

Colliding galaxy clusters

December 5, 2016

Galaxy clusters contain a few to thousands of galaxies and are the largest bound structures in the universe. Most galaxies are members of a cluster. Our Milky Way, for example, is a member of the "Local Group," a set of about ...

New dwarf satellite galaxy of Messier 83 found

December 5, 2016

(Phys.org)—Astronomers have found a new dwarf satellite of Messier 83 (M83, also known as the Southern Pinwheel Galaxy) located some 85,000 light years from its host. This satellite galaxy was designated dw1335-29 and could ...

Tangled threads weave through cosmic oddity

December 1, 2016

New observations from the NASA/ESA Hubble Space Telescope have revealed the intricate structure of the galaxy NGC 4696 in greater detail than ever before. The elliptical galaxy is a beautiful cosmic oddity with a bright core ...

Mystery of ultra-diffuse faint galaxies solved

November 28, 2016

Over the last year, researchers have observed some very faint, diffuse galaxies. The galaxies are as faint as dwarf galaxies, but are distributed over an area just as large as the Milky Way.

Recommended for you

Atlas of the RNA universe takes shape

December 7, 2016

As the floor plan of the living world, DNA guides the composition of animals ranging from unicellular organisms to humans. DNA not only helps shepherd every organism from birth through death, it also plays an essential role ...

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.