Big Computers For Big Science

August 23, 2004

A visiting neutron scattering scientist at ORNL sends data from her experiment to a San Diego supercomputer for analysis. The calculation results are sent to Argonne National Laboratory, where they are turned into "pictures." These visualizations are sent to a collaborating scientist's workstation at North Carolina State University, one of the core universities of UT-Battelle, which manages ORNL for DOE.

To make their discoveries, scientists must interact with supercomputers to generate, examine, and archive huge datasets. To turn data into insight, this interaction must occur on human time scales, not over days or weeks, but over minutes.

Big science requires big computers that are not just scaled-up desktop personal computers. Big computers are fundamentally different from PCs in their ability to model enormous systems, generate immense volumes of data, and, as a payoff, solve uniquely difficult scientific problems. To put this difference in perspective, next-generation science datasets will approach or exceed a petabyte in size. If one of today's desktop PCs had a disk able to hold a petabyte-sized file, the PC would require over three years to read the file.

The Center for Computational Sciences at ORNL has been tasked by DOE to develop the next generation of scientific networks to address the challenges of large science applications. The techniques developed in Oak Ridge will eventually filter out into the high end of the business world. Just as yesterday's scientific supercomputers have become today's central business and engineering computers, the same transfer will result in this network, called the DOE UltraScience Net, becoming the core of tomorrow's commercial networks.

Source: ORNL

Explore further: Smart imaging of materials lets national labs look to solving big energy problems

Related Stories

Neutrons find 'missing' magnetism of plutonium

July 10, 2015

Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium's magnetism, which scientists have long theorized but have never been able to experimentally observe. The advances that enabled ...

Unlocking lignin for sustainable biofuel

July 7, 2015

Turning trees, grass, and other biomass into fuel for automobiles and airplanes is a costly and complex process. Biofuel researchers are working to change that, envisioning a future where cellulosic ethanol, an alcohol derived ...

The protein problem

June 17, 2015

The importance of proteins is difficult to overstate; they play a critical role in countless biological processes. An enhanced understanding of their structure and function is essential to advancing the state of the art in ...

Recommended for you

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.