First Ultraviolet Light Silicon-Based Photodetector Invented by UIUC

Jul 19, 2004

By depositing thin films of silicon nanoparticles on silicon substrates, researchers at the University of Illinois at Urbana-Champaign have fabricated a photodetector sensitive to ultraviolet light. Silicon-based ultraviolet sensors could prove very handy in military, security and commercial applications.

''Silicon is the most common semiconductor, but it has not been useful for detecting ultraviolet light until now,'' said Munir Nayfeh, a professor of physics at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. ''Ultraviolet light is usually absorbed by silicon and converted into heat, but we found a way to make silicon devices that absorb ultraviolet light and produce electrical current instead.''

As will be reported in the August issue of the journal Photonics Technology Letters, the technique behind silicon sensing of ultraviolet light is compatible with conventional integrated circuit technology. Conveniently, both the sensor and the computer could be incorporated on the same chip.

To create their ultraviolet-based photodetectors, Nayfeh, graduate students Satish Rao, Adam Smith and Joel Therrien, and undergraduate student Osama Nayfeh begin with nanoparticles dispensed from silicon wafers using electrochemical etching. The nanoparticles are about 1 billionth of a meter in diameter and contain about 30 silicon atoms.

The researchers then deposit a thin film of the nanoparticles in a hole etched into the surface of another silicon wafer using standard lithographic techniques. Small conductive pads of gold complete the assembly. Electricity flows when ultraviolet light strikes the nanoparticles.

"Ultraviolet light efficiently couples to the nanoparticles and produces electron-hole pairs," said Nayfeh, who also is a researcher at the university’s Center for Nanoscale Science and Technology. "Contrary to what occurs in bulk silicon, the electron-hole pairs do not appreciably recombine by non-radiative processes. Strong quantum confinement allows for charge separation and collection."

Combining silicon nanoparticles with conventional silicon wafers could offer the best of both material systems, Nayfeh said. "Placing a thin layer of nanoparticles on the front of a silicon solar cell, for example, could improve the cell’s efficiency and its lifetime."

Other applications include ultraviolet-based detectors for missile-warning systems and airborne biological agents, industrial flame sensors and suntan monitors.

The National Science Foundation; the state of Illinois; the Grainger Foundation; and the Technology Research, Education, and Commercialization Center funded the work. TRECC is managed by the National Center for Supercomputing Applications and funded by a grant from the Office of Naval Research. The researchers have applied for a patent.

Source: University of Illinois at Urbana-Champaign

Explore further: A stretchy mesh heater for sore muscles

Related Stories

The discovery of the molecule Si-C-Si in space

Jun 29, 2015

The space between stars is not empty—it contains a vast reservoir of diffuse material with about 5-10% of the total mass of our Milky Way galaxy. Most of the material is gas, but about 1% of this mass (quite ...

'Supercool' material glows when you write on it

May 13, 2015

A new material developed at the University of Michigan stays liquid more than 200 degrees Fahrenheit below its expected freezing point, but a light touch can cause it to form yellow crystals that glow under ...

Research team develops 'smart' window

Apr 09, 2015

Commonplace as they are, windows are an important piece of technology. Beyond architectural aesthetics, a building's ecological footprint depends heavily on how its internal light and heat are managed. With ...

A better device to detect ultraviolet light

Oct 04, 2013

Researchers in Japan have developed a new photodiode that can detect in just milliseconds a certain type of high-energy ultraviolet light, called UVC, which is powerful enough to break the bonds of DNA and ...

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.